1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkinab [10]
3 years ago
5

If a small boy, in 30 days, saved $1.00 to spend in your store, how much did he save each day?

Mathematics
2 answers:
kirza4 [7]3 years ago
8 0

Answer:

He saved 3.3 cents for 29 days and 4.3 cents for one day.

(This means a minimum of 3.3 cents each day)

Step-by-step explanation:

We divide the total amount saved by the number of days it took to save the money.

i.e $1.00 divided by 30 days

\frac{1}{30} = 0.033

He saves a minimum of $0.033 each day for 30 days

However, if he only saves $0.033 cents, he would have saved $0.99 on the thirtieth day.

0.033 x 30 = $0.99

This means he would be $0.01 short

Therefore, in order to have $1.00, he must save an extra $0.01 on one of the 30 days

This means he would save 0.033 + 0.01 = $0.043 for one day.

Where $1.00 = 100 cents

$0.033 = 3.3 cents

$0.01 = 1 cent

$0.043 = 4.3 cents

He saved 3.3 cents for 29 days and 4.3 cents for one day

3.3 x 29 = 95.7 cents

4.3 x 1 = 4.3 cents

95.7 + 4.3 = 100 cents

100 cents = $1.00

ivolga24 [154]3 years ago
6 0

Answer:

3 cents for 29 days and 4 cents for 1 day

Step-by-step explanation:

1.00 dollar / 30 days = .03 cents

3 cents x 30 = .99 cents

3 cents for 29 days and 4 cents for 1 day

You might be interested in
I NEED HELP!!! PLEASE HELP!!! FIRST TO ANSWER GETS 50 POINTS AND BRAINLIEST ANSWER!!! HEEELLPPPP!!!! Find the distance between p
daser333 [38]

Answer:

8.6 to the nearest tenth.

Step-by-step explanation:

Using the distance formula d =  √ [(y2 - y1)^2 + (x2 - x1)^2] where (x1, y1) and (x2, y2) are the two endpoints.

= √ (4 - -3)^2 + (-3-2)^2

= √(49 + 25)

= 8.60

6 0
3 years ago
55 POINTS ASAP
QveST [7]

Step-by-step explanation:

Option B. Here Adam Ct. is perpendicular to Betha Dr. and Charles. So, St. Bertha Dr. || Charles St. Since they are parallel to each other

8 0
3 years ago
Read 2 more answers
A number plus 1/3 of the number can be expressed as:
nirvana33 [79]

Answer:

n+n/3

Step-by-step explanation:

n+1/3 n=n+n/3=4n/3

Please mark as Brainliest! :)

Have a nice day.

6 0
3 years ago
8) Monica spent $34 on brownies and cookies. We know brownies cost $2
Anna [14]
The answer is

2b + .75c = 34
3 0
3 years ago
Read 2 more answers
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Other questions:
  • The sum of two numbers is 153. if four times the smaller number is subtracted from the larger​ number, the result is 18. find th
    12·1 answer
  • 12. The overtime rate of pay which is one-and-a-half times the basic rate of $240<br> per hour is
    5·1 answer
  • Subtracting polynomials
    12·1 answer
  • 2928217181822×182837 12
    13·1 answer
  • Probability question. Please answer with work attached.
    14·1 answer
  • Now that you know m and b, what is the equation of the line of best fit?
    7·1 answer
  • PLEASE HELP!!!! NEED ANSWER ASAP
    6·1 answer
  • Calculate the distance Colt walks if he walks 7/8 mile each day for days. Write and solve a multiplication equation.
    15·2 answers
  • Pls helppp meee its due in 2:30 pm may 18 help!
    11·1 answer
  • A square has a perimeter of 12x 52 units. which expression represents the side length of the square in units? x 4 x 40 3x 13 3x
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!