Answer:
6 units
Step-by-step explanation:
(-4 , -10) ; (-4 , -4)
Distance = 
![= \sqrt{(-4-[-4])^{2}+(-4-[-10])^{2}}\\\\= \sqrt{(-4+4)^{2}+(-4+10)^{2}}\\\\=\sqrt{0+(6)^{2}}\\\\= \sqrt{36}\\\\= 6](https://tex.z-dn.net/?f=%3D%20%5Csqrt%7B%28-4-%5B-4%5D%29%5E%7B2%7D%2B%28-4-%5B-10%5D%29%5E%7B2%7D%7D%5C%5C%5C%5C%3D%20%5Csqrt%7B%28-4%2B4%29%5E%7B2%7D%2B%28-4%2B10%29%5E%7B2%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B0%2B%286%29%5E%7B2%7D%7D%5C%5C%5C%5C%3D%20%5Csqrt%7B36%7D%5C%5C%5C%5C%3D%206)
Answer:
Triangle 1: x = 80 degrees, acute
Triangle 2: x = 10 degrees, right
Step-by-step explanation:
Triangle 1:
By the Sum of Interior Angles Theorem, all the angles inside the triangle adds up to 180 degrees. So, set up this equation:

Solve for x:

So, x = 80 degrees
Because all the angles are less than 90 degrees, this is an acute triangle.
Triangle 2:
By the Sum of Interior Angles Theorem, all the angles inside the triangle adds up to 180 degrees. So, set up this equation (with the right angle given):

Solve for x:

So, x = 10 degrees
Because there is an angle measuring 90 degrees, this is a right triangle.
Answer:
x + 2(2x-4) = 10
Step-by-step explanation:
Here in this question, we want to select which is the correct answer if we substitute for the value of y in the second equation, using the first.
In the first, we have;
y = 2x -4
Now, let’s input this value of y into the second equation.
By direct substitution, what we have is the following;
x + 2y = 10
—-> x + 2(2x -4) = 10