For
ax^2+bx+c=
and a=1
b/2 squared=c makes a perfect square
b=16
16/2=8
8^2=64
the value of c should be 64
factored form
(x+8)^2
Answer: 460 students
Step-by-step explanation:
Based on the information given in the question, let the total number of students that attend I.S. 59 be represented by x.
Since we've been given the information that 230 signed up for the school picnic which was 50% of all students in the school. Then, the students in the school will be:
= 50% of x = 230
0.5 × x = 230
0.5x = 230
x = 230/0.5
x = 460
Therefore, 460 students attend the school.
Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
Answer:
y- intercept --> Location on graph where input is zero
f(x) < 0 --> Intervals of the domain where the graph is below the x-axis
x- intercept --> Location on graph where output is zero
f(x) > 0 --> Intervals of the domain where the graph is above the x-axis
Step-by-step explanation:
Y-intercept: The y-intercept is equivalent to the point where x= 0. 'x' is the input variable in an equation, therefore the y-intercept is where the input, or x, is equal to 0.
f(x) <0: Notice the 'lesser than' sign. This means that the value of f(x), or 'y', is less than 0. This means that this area consists of intervals of the domain below the x-axis.
X-intercept: The x-intercept is the location of the graph where y= 0, or the output is equal to 0.
f(x) >0: In this, there is a 'greater than' sign. This means that f(x), or 'y', is greater than 0. Therefore, this consists of intervals of the domain above the x-axis.