Answer:
Arithmetic sequence
Step-by-step explanation:
It's<u> Arithmetic sequence</u>, because it's basically the list of integers that can be added, or subtracted by a same number every time. So, according to the following sequence shown, it shows that it's subtracting by
every time.
Answer:
We can find the solution to a system of equations by graphing the equations. Let's do this with the following systems of equations:
The numerical value of the mean voltage is 25.47 V
To find the numerical value of the mean voltage, V of V(t) = 40 sin(t), we integrate V(t) with respect to t over the interval [0.π]
So,
![V = \frac{1}{\pi } \int\limits^\pi _0 {V(t)} \, dt \\V = \frac{1}{\pi } \int\limits^\pi _0 {40sint} \, dt \\V = \frac{1}{\pi } [-40cost]_{0}{\pi } \\V = \frac{1}{\pi } -[40cos\pi - 40cos0]\\\\V = \frac{1}{\pi } (-[40 X (-1) - 40 X 1})\\V = -\frac{1}{\pi } [-40 - 40]\\V = \frac{80}{\pi } \\V = 25.465 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5Cint%5Climits%5E%5Cpi%20_0%20%7BV%28t%29%7D%20%5C%2C%20dt%20%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5Cint%5Climits%5E%5Cpi%20_0%20%7B40sint%7D%20%5C%2C%20dt%20%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5B-40cost%5D_%7B0%7D%7B%5Cpi%20%7D%20%20%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20-%5B40cos%5Cpi%20%20-%2040cos0%5D%5C%5C%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%28-%5B40%20X%20%28-1%29%20-%2040%20X%201%7D%29%5C%5CV%20%3D%20-%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5B-40%20-%2040%5D%5C%5CV%20%3D%20%5Cfrac%7B80%7D%7B%5Cpi%20%7D%20%5C%5CV%20%3D%2025.465%20V)
V ≅ 25.47 V
So, the numerical value of the mean voltage is 25.47 V
Learn more about mean volatage here:
brainly.com/question/17928028
Answer:
a. the less variability it has
Step-by-step explanation:
The standard deviation is a measure of the amount of variation or dispersion of a set of values.
When your standard deviation is big your data is more dispersed.
When your standar deviation is small your mean is a representative index of your data, and there is less variability.
If there was no dispersion of the data (if all your data be the same) then the standard deviation will be 0.
Answer:
1/6
Step-by-step explanation: