The correct answer for this question is that there are 72 2-inch segment in 12ft. Hopefully that answered your question for you!
First, what's 3 to the power of 8?
Then what's 3 to the power of 10
Now subtract them by each other for your answer
1 day = 24 hours
1 hour = 60 minutes
1 minute = 60 seconds
60 seconds x 60 minutes = 3,600 seconds per hour
3,600 seconds per hour x 24 hours = 86,400 seconds per day.
The light flashes 5 times every 10 seconds:
5 flashes / 10 seconds = 1 flash every 2 seconds
86,400 seconds / 2 seconds = 43,200 flashes per day.
If you're working with complex numbers, then I'm sure you're comfortable with plotting them on a complex-plane ... real part of the number along the x-axis, and imaginary part of the number along the y-axis.
When you look at it that way, your two points are simply two points on the x-y plane:
4 - i ===> (4, -1)
-2 + 3i ===> (-2, 3) .
The distance between them is
D = √ (difference in 'x')² + (difference in 'y')²
= √ (6)² + (4)²
= √ (36 + 16)
= √ (52)
= 7.211 (rounded)
Answer:
hi your question options is not available but attached to the answer is a complete question with the question options that you seek answer to
Answer: v = 5v + 4u + 1.5sin(3t),
Step-by-step explanation:
u" - 5u' - 4u = 1.5sin(3t) where u'(1) = 2.5 u(1) = 1
v represents the "velocity function" i.e v = u'(t)
As v = u'(t)
<em>u' = v</em>
since <em>u' = v </em>
v' = u"
v' = 5u' + 4u + 1.5sin(3t) ( given that u" - 5u' - 4u = 1.5sin(3t) )
= 5v + 4u + 1.5sin(3t) ( noting that v = u' )
so v' = 5v + 4u + 1.5sin(3t)
d/dt
=
+
Given that u(1) = 1 and u'(1) = 2.5
since v = u'
v(1) = 2.5
note: the initial value for the vector valued function is given as
= ![\left[\begin{array}{ccc}1\\2.5\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C2.5%5C%5C%5Cend%7Barray%7D%5Cright%5D)