Find <span>tan<span>(<span><span>5π</span>12</span>)</span></span> and sin ((5pi)/12)
Answer: <span>±<span>(2±<span>√3</span>)</span>and±<span><span>√<span>2+<span>√3</span></span></span>2</span></span>
Explanation:
Call tan ((5pi/12) = t.
Use trig identity: <span><span>tan2</span>a=<span><span>2<span>tana</span></span><span>1−<span><span>tan2</span>a</span></span></span></span>
<span><span>tan<span>(<span><span>10π</span>12</span>)</span></span>=<span>tan<span>(<span><span>5π</span>6</span>)</span></span>=−<span>1<span>√3</span></span>=<span><span>2t</span><span>1−<span>t2</span></span></span></span>
<span><span>t2</span>−2<span>√3</span>t−1=0</span>
<span>D=<span>d2</span>=<span>b2</span>−4ac=12+4=16</span>--> <span>d=±4</span>
<span>t=<span>tan<span>(<span><span>5π</span>12</span>)</span></span>=<span><span>2<span>√3</span></span>2</span>±<span>42</span>=2±<span>√3</span></span>
Call <span><span>sin<span>(<span><span>5π</span>12</span>)</span></span>=<span>siny</span></span>
Use trig identity: <span><span>cos2</span>a=1−2<span><span>sin2</span>a</span></span>
<span><span>cos<span>(<span><span>10π</span>12</span>)</span></span>=<span>cos<span>(<span><span>5π</span>6</span>)</span></span>=<span><span>−<span>√3</span></span>2</span>=1−2<span><span>sin2</span>y</span></span>
<span><span><span>sin2</span>y</span>=<span><span>2+<span>√3</span></span>4</span></span>
<span><span>siny</span>=<span>sin<span>(<span><span>5π</span>12</span>)</span></span>=±<span><span><span>√<span>2+<span>√3</span></span></span>2</span></span></span>
Answer:
<u>36</u>
Step-by-step explanation:
You multiply 40% by 90. Or make 40% 0.4 and multiply that by 90.
Answer: Together the pool can be drained in 2 hours and 18 minutes.
Answer:
y=-4/-3x+1
Step-by-step explanation:
<span>Based on the problems I have recently done on FLVs with this though, is that if you connect the center of the arcs to the top intersection point, if the angle degrees, and opposite arcs are the same then it is an equilateral triangle.</span>