Answer:
The sample size must be atleast 502 to have a margin of error of 0.03
Step-by-step explanation:
We are given the following in the question:
Proportion = 0.32
![\hat{p} = 0.32](https://tex.z-dn.net/?f=%5Chat%7Bp%7D%20%3D%200.32)
Level of significance = 0.15
Margin of error = 0.03
Formula for margin of error =
![z_{stat}\times \sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}](https://tex.z-dn.net/?f=z_%7Bstat%7D%5Ctimes%20%5Csqrt%7B%5Cdfrac%7B%5Chat%7Bp%7D%281-%5Chat%7Bp%7D%29%7D%7Bn%7D%7D)
![z_{critical}\text{ at}~\alpha_{0.15} = 1.44](https://tex.z-dn.net/?f=z_%7Bcritical%7D%5Ctext%7B%20at%7D~%5Calpha_%7B0.15%7D%20%3D%201.44)
We have to find the sample size such that the margin of error is atmost 0.03.
Putting values, we get,
![z_{stat}\times \sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}\leq 0.03\\\\1.44\times \sqrt{\dfrac{0.32(1-0.32)}{n}}\leq 0.03\\\\\sqrt{n}\geq 1.44\times \dfrac{\sqrt{0.32(1-0.32)}}{0.03}\\\\\sqrt{n}\geq 22.39\\n\geq 501.3121\\\Rightarrow n\geq 502](https://tex.z-dn.net/?f=z_%7Bstat%7D%5Ctimes%20%5Csqrt%7B%5Cdfrac%7B%5Chat%7Bp%7D%281-%5Chat%7Bp%7D%29%7D%7Bn%7D%7D%5Cleq%200.03%5C%5C%5C%5C1.44%5Ctimes%20%5Csqrt%7B%5Cdfrac%7B0.32%281-0.32%29%7D%7Bn%7D%7D%5Cleq%200.03%5C%5C%5C%5C%5Csqrt%7Bn%7D%5Cgeq%201.44%5Ctimes%20%5Cdfrac%7B%5Csqrt%7B0.32%281-0.32%29%7D%7D%7B0.03%7D%5C%5C%5C%5C%5Csqrt%7Bn%7D%5Cgeq%2022.39%5C%5Cn%5Cgeq%20501.3121%5C%5C%5CRightarrow%20n%5Cgeq%20502)
Thus, the sample size must be atleast 502 to have a margin of error of 0.03 in approximation of proportion of people who would black out at 6 or more Gs.