11
subtract 9 to both sides
9514 1404 393
Answer:
(a) no
(b) no
Step-by-step explanation:
The two questions are asking essentially the same thing. There is nothing that indicates DC ≅ DB or that AC ≅ AB. One (both) of these conditions is (are) required for ΔBAC to be isosceles, so that AD is both a perpendicular bisector of BC and a bisector of angle BAC.
There is not enough information to answer either question affirmatively.
Answer:
-2
Step-by-step explanation:
Step 1: Simplify both sides of the equation.
4(3+c)+c=c+4
(4)(3)+(4)(c)+c=c+4(Distribute)
12+4c+c=c+4
(4c+c)+(12)=c+4(Combine Like Terms)
5c+12=c+4
5c+12=c+4
Step 2: Subtract c from both sides.
5c+12−c=c+4−c
4c+12=4
Step 3: Subtract 12 from both sides.
4c+12−12=4−12
4c=−8
Step 4: Divide both sides by 4.
4c
4
=
−8
4
c=−2
Answer:
You didn't add a specific time frame so I can you a correct answer.
Explanation:
⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣤⣄⠄⡀⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣴⣿⣿⣿⣿⣷⡒⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⡀⣹⣿⣿⣿⣿⣿⣯⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣀⣀⣴⣿⣿⣿⣿⣿⣿⠿⠋⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⢀⣀⣤⣶⣾⠿⠿⠿⠿⣿⣿⣿⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⠄⠄ ⠄⡶⣶⡿⠛⠛⠉⠉⠄⠄⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⠃⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠘⠃⠄⠄⠄⠄⠄⠄⠄⠄⢠⣿⣿⣿⣿⣿⡟⠁⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣤⣾⣷⣿⣿⣿⣿⡏⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⢀⣠⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⠂⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⢀⣤⣴⣾⣿⣿⣿⣿⡿⠛⠻⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠸⣿⣿⣿⣿⠋⠉⠄⠄⠄⠄⣼⣿⣿⡿⠇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠈⠻⣿⣿⣆⠄⠄⠄⠄⠄⣿⣿⣿⣷⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠻⣿⣿⣆⡀⠄⠄⠈⠻⣿⣿⣿⣦⡄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⣀⣌⣿⣿⣿⣦⡄⠄⠄⠄⠙⠻⣿⣿⣦⣀⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠈⠉⠉⠉⠉⠉⠁⠄⠄⠄⠄⠄⠄⠄⠘⠻⣿⢿⢖⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠉⠉⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⢠⣴⣧⣤⣴⡖⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⣰⣿⣿⣿⣿⣿⣷⣀⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⣿⣷⣶⡄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠈⠘⠻⢿⣿⣿⣿⣿⣿⣿⣿⣆⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣰⣿⣿⣿⣿⣿⣿⣿⣿⣿⡆⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⢤⣴⣦⣄⣀⣀⣴⣿⡟⢿⣿⡿⣿⣿⣿⣿⣿⣿⡄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠉⠉⠙⠻⠿⣿⡿⠋⠄⠈⢀⣀⣠⣾⣿⣿⣿⣿⣿⡄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⢀⣠⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡏⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⠉⠋⠉⠉⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠈⠛⠛⣿⣿⣿⣿⣿⣿⣇⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⢀⣠⣶⣿⣿⠿⢛⣿⣿⣿⣿⣷⣤⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⣶⣷⣿⣿⡉⠄⠄⠄⠄⠉⠉⠉⠉⠉⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠘⠛⠟⢿⣤⣤⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⠄⣠⣶⣶⣷⣿⣶⡊⠄⠄⣀⣤⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣀⣴⣶⣾⢿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣿⣿⡏⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢸⣿⡍⠁⠄⠈⢿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣼⣿⣿⣿⣿⣿⣿⣿⠏⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⡿⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢸⣿⣿⣿⣿⣿⡿⠋⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⠻⣿⣿⣿⣿⣡⣶⣶⣄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣀⣀⣠⣴⣦⡤⣿⣿⣿⣿⡻⣿⣿⡯⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣷⣿⣿⣿⣿⣿⣿⡟⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢻⣿⣿⡏⠉⠙⠛⢛⣿⣿⣿⣿⠟⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⢿⣿⡧⠄⠄⢠⣾⣿⣿⡿⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠈⣿⣿⣄⣼⣿⣿⣿⠏⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠸⡿⣻⣿⣿⣿⣿⣆⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣻⠟⠈⠻⢿⣿⣿⣆⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠿⠍⠄⠄⠄⠄⠉⠻⣿⣷⡤⣀⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⢻⣿⡿⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⡯⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠸⠃⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣠⣶⣶⣤⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣾⣿⣿⣿⣿⣿⡞⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⡿⢃⡀⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠘⢿⣿⣿⣿⣿⣿⣿⣿⣧⡀⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢈⣽⣿⣿⣿⣿⣿⣿⣿⢿⣷⣦⣀⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣸⣿⣿⣿⣿⣿⣿⣿⣿⠄⢉⣻⣿⡇⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢠⣿⣿⡉⣀⣿⣿⣿⣿⣋⣴⣿⠟⠋⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣠⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣏⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢀⣀⣼⣿⣿⣿⣿⣿⣿⠿⢿⣿⣿⣿⣿⣿⣮⡠⠄⠄⠄⠄ ⠄⠄⠄⠄⢰⣾⣿⣿⡿⠿⠛⠛⠛⠉⠄⠄⠄⠄⠙⠻⢿⣿⣿⣿⣶⣆⡀⠄ ⠄⠄⠄⠄⠄⠹⣿⣿⣦⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢉⣿⣿⣿⣿⣿⠂ ⠄⠄⠄⠄⠄⠄⠈⢿⣿⣇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣴⣾⣿⡿⠟⠉⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠂⢿⣿⣥⡄⠄⠄⠄⠄⢀⣠⣶⣿⣿⠟⠋⠁⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⣀⣤⣾⣿⣿⣷⣿⣃⡀⢴⣿⣿⡿⣿⣍⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠈⠉⠉⠉⠉⠉⠉⠉⠄⠄⠄⠉⠙⠛⠛⠛⠛⠂⠄⠄⠄⠄⠄