Let us assume the cost of 1 apple = x dollars
Let us also assume the cost of 1 pear = y dollars
Then we can form two equations from the details given in the question. Based on those details the required answer to the question can be easily deduced.
3x + 8y = 14.50
And
6x + 4y = 14
Dividing both sides of the equation by 2 we get
3x + 2y = 7
2y = 7 - 3x
y = (7 - 3x)/2
Putting the value of y from the second equation in the first equation we get
3x + 8y = 14.50
3x + 8[(7 - 3x)/2] = 14.50
3x + 4 (7 - 3x) = 14.50
3x + 28 - 12x = 14.50
- 9x = 14.50 - 28
- 9x = - 13.5
9x = 13.5
x = 13.5/9
= 1.5
Putting the value of x in the second equation we get
6x + 4y = 14
(6 * 1.5) + 4y = 14
9 + 4y = 14
4y = 14 - 9
4y = 5
y = 5/4
= 1.25
So we can find from the above deduction that the cost of 1 apple is 1.5 dollars and the cost of 1 pear is 1.25 dollars
Then
Cost of 2 apples = 2 * 1.5 dollars
= 3.0 dollars
So the cost of 2 apples is $3 and the cost of 1 pear is $1.25.
X=4
4(4) + 1 =
16 + 1= 17
the answer is 17
The rate of change is 25 because it goes 25 50 75 100 think of it like quarters
Answer:
Step-by-step explanation:
pop 1 n₁ = 260, p₁ = 58% = 0.58
pop 2 n₂ = 260, p₂ = 8% = 0.08
Null hypothesis: p₁ ≤ p₂
Alternative hypothesis: p₁ > p₂
The test statistic : p₁-p₂ / √{p-sample (1 - p-sample) (1/n₁ + 1/n₂)}
where p-sample is sample proportion = p₁n₁ +p₂n₂ / n₁+n₂
Thus, p-sample = 0.58x260 +0.08x260 / 260+260 =150.8+20.8 / 520 = 171.6 / 520 = 0.33.
Thus, the test statistic is (0.58 - 0.08) / √[0.33 (1-0.33) (0.0038+0.0038)
= 0.5 / √[0.33(0.67) (0.0076)
= 0.5 / √0.00168036
= 0.5 / 0.04099
= 12.20
P = P(Z>12.20) = 1-P(Z≤12.20) at a significance level of 0.1= the p-value is less than the hypothesized thus, we have sufficient evidence to reject the null hypothesis and concluding that vinyl gloves have a greater virus leak than latex gloves.