Answer:
A person must get an IQ score of at least 138.885 to qualify.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean and standard deviation , the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
(a). [7pts] What IQ score must a person get to qualify
Top 8%, so at least the 100-8 = 92th percentile.
Scores of X and higher, in which X is found when Z has a pvalue of 0.92. So X when Z = 1.405.
A person must get an IQ score of at least 138.885 to qualify.
Answer:
Step-by-step explanation:
You first equate it to zero to get:
Then solve using square root method
Or
Now work it backwards
Hence the factored form is:
Answer:
47.5
Step-by-step explanation:
33+62=95
95/2=47.5
2 + (3 - 9) / -3 * 4
1st is subtraction...u have to do what is in the parenthesis first
2 + (- 6) / -3 * 4
2nd is division
2 + 2 * 4
3rd is multiplication
2 + 8
4th is addition
10 <== ur solution
We begin with an unknown initial investment value, which we will call P. This value is what we are solving for.
The amount in the account on January 1st, 2015 before Carol withdraws $1000 is found by the compound interest formula A = P(1+r/n)^(nt) ; where A is the amount in the account after interest, r is the interest rate, t is time (in years), and n is the number of compounding periods per year.
In this problem, the interest compounds annually, so we can simplify the formula to A = P(1+r)^t. We can plug in our values for r and t. r is equal to .025, because that is equal to 2.5%. t is equal to one, so we can just write A = P(1.025).
We then must withdraw 1000 from this amount, and allow it to gain interest for one more year.
The principle in the account at the beginning of 2015 after the withdrawal is equal to 1.025P - 1000. We can plug this into the compound interest formula again, as well as the amount in the account at the beginning of 2016.
23,517.6 = (1.025P - 1000)(1 + .025)^1
23,517.6 = (1.025P - 1000)(1.025)
Divide both sides by 1.025
22,944 = (1.025P - 1000)
Add 1000 to both sides
23,944 = 1.025P
Divide both by 1.025 for the answer
$22,384.39 = P. We now have the value of the initial investment.