Given side length "a" and angle "A", calculate the diagonals<span><span>
p = square root [( 2a^2 - 2a^2 cos(A) )]
</span>q = </span><span>square root [( 2a^2+ 2a^2 cos(A) )]</span>
http://www.calculatorsoup.com/calculators/geometry-plane/rhombus.php
side = 36
cos (32) = 0.84805
p = <span>small diagonal = </span>
<span>
<span>
<span>
19.8457652914
</span>
</span>
</span>
<span><span>
</span>
</span>
q =
large diagonal =
<span>
<span>
<span>
69.2108777578
</span>
</span>
</span>
Answer:
2over/a -b-c
Step-by-step explanation:
remove the parentheses
Answer:
Multiplay 30 by 5 Then multiply five-by-five then Multiply 20 by 5 Then take away your answer
Answer:
See explanation
Step-by-step explanation:
<u><em>1st photo:</em></u>
x =

= 15
x =
<u><em>2nd photo:</em></u>
(a) GEH ~ FGH ~ FEG
<em>similar triangles, use similar corners in the right order</em>
(b)
AND 
<em>similar triangles, use similar sides in proportion</em>
<em />
<u><em>3rd photo:</em></u>
x = 4.5 or 4 1/2

<em>2x = 9</em>
<em>x = 4.5 or 4 1/2</em>
<em />
<u><em>4th photo:</em></u>
Length of string = 118.2 ft
<em>sin(40) = 76/x</em>
<em>x = 76/sin(40) = 118.2</em>