Answer:\bf ~\hspace{7em}\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} ~\hspace{4.5em} a^n\implies \cfrac{1}{a^{-n}} ~\hspace{4.5em} \cfrac{a^n}{a^m}\implies a^na^{-m}\implies a^{n-m} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \left( 5^{\frac{3}{2}} \right)^{-\frac{2}{3}}\implies 5^{-\frac{3}{2}\cdot \frac{2}{3}}\implies 5^{-1}\implies \cfrac{1}{5}\implies 0.2 \\\\[-0.35em] ~\dotfill
\bf (256^{0.5})^{1.25}\implies [(2^8)^{0.5}]^{1.25}\implies [2^{8\cdot 0.5}]^{1.25}\implies [2^4]^{1.25}\implies 2^{4\cdot 1.25} \\\\\\ 2^5\implies 32 \\\\[-0.35em] ~\dotfill\\\\ ( 81^{-\frac{1}{6}} )^{\frac{3}{2}}\implies [(3^4)^{-\frac{1}{6}} ]^{\frac{3}{2}}\implies 3^{4\cdot -\frac{1}{6}\cdot \frac{3}{2}}\implies 3^{-\frac{12}{12}}\implies 3^{-1} \\\\\\ \cfrac{1}{3}\implies 0.33...
Step-by-step explanation: I don’t really know about inequalities can y’all help?
Answer:
Area segment = 3/2 π - (9/4)√3 units²
Step-by-step explanation:
∵ The hexagon is regular, then it is formed by 6 equilateral Δ
∵ Area segment = area sector - area Δ
∵ Area sector = (Ф/360) × πr²
∵ Ф = 60° ⇒ central angle of the sector
∵ r = 3
∴ Area sector = (60/360) × (3)² × π = 3/2 π
∵ Area equilateral Δ = 1/4 s²√3
∵ The length of the side of the Δ = 3
∴ Area Δ = 1/4 × (3)² √3 = (9/4)√3
∴ Area segment = 3/2 π - (9/4)√3 units²
Answer: 32x^11 y^6
If you are still confused just let me know i will do it step by step :)
Answer:
I would have to say Option 2
Step-by-step explanation:
The answer for this one is 670.