50 grams or 50,000 mili grams is the mass of solute in 1000 grams of a solution having a concentration of 5 parts per million.
Explanation:
Total mass of solution = 1000 grams or 1000 ml since 1 gram = 1 ml
concentration is 5 parts per million ( 5 mg in 1000 ml solution or 0.005 gram in 1000 ml)
the formula used for parts per million:
parts per million = 
putting the values in the equation:
parts per million = 
0.005 x 1000 = mass of solute
50 grams= mass of solute
converting this into mg
50,000 mg. is the total mass of solute in 5ppm of 1000 ml solution.
The correct answer is option C, that is, it is reduced.
In reduction and oxidation reactions, reduction refers to the loss of an oxygen atom from a molecule or the gaining of one or more electrons. A reduction reaction is observed from the perspective of the molecule being reduced, as when one molecule gets reduced, another one gets oxidized. The complete reaction is called a redox reaction.
In the given case, iron gains electrons mean that it is reduced.
<span>The force of a system can be measured by formula P=mf where P is the force, m is the mass of the system and f is the acceleration of the system. The formula is known as Newton's second law of motion.</span>
Answer:
The correct option here is the first option
Explanation:
Covalent bond is the bond that involves the sharing of electrons between the participating atoms. The electrons (in the outermost shells of the atoms) that are involved this sharing are called the "shared pair" while those electrons (in the outermost shells of the atoms) that are not involved in this sharing are called the "lone pair". Bonding eventually leads to each of the participating atoms achieving it's octet configuration.
Carbon will bind covalently with fluorine (to form carbon tetrafluoride) with each of the electrons on the outermost shell of the carbon been shared covalently with fluorine atoms (that also requires just one electron to achieve it's octet configuration). Thus, at the end, we would have one carbon atom being covalently linked to four flourine atoms.