Answer:
49.2 g/mol
Explanation:
Let's first take account of what we have and convert them into the correct units.
Volume= 236 mL x (
) = .236 L
Pressure= 740 mm Hg x (
)= 0.97 atm
Temperature= 22C + 273= 295 K
mass= 0.443 g
Molar mass is in grams per mole, or MM=
or MM=
. They're all the same.
We have mass (0.443 g) we just need moles. We can find moles with the ideal gas constant PV=nRT. We want to solve for n, so we'll rearrange it to be
n=
, where R (constant)= 0.082 L atm mol-1 K-1
Let's plug in what we know.
n=
n= 0.009 mol
Let's look back at MM=
and plug in what we know.
MM= 
MM= 49.2 g/mol
The total number of elements that one particular element can bond to can be determined by simply drawing the Lewis structure of the element.
Place the chemical symbol
Then look at the group number = valence electrons
Distribute the valence electrons around the atom.
C = 4 bonds
N = 3 bonds
O = 2 bonds
First identify which is being oxidized and reduced. In this case, the Mg is being oxidized and the Hg is being reduced.
Mg --> Mg+2
<span>Hg+2 --> Hg+1
</span>
Then you have to balance each half reaction first with electrons before adding them together in one equation

⇒

and

⇒
and then combine them together to form

⇒

It isn't necessary to keep the electrons but its essential to know how many there are in order to know how many are in the equation in order to calculate the reaction energy. Note: A<span>dd H+ and H2O to balance the H's and O's in acidic solution if needed.</span>
no the best source is blood.
Answer:
1. 6 significant digits. 2. 2 significant digits. 3. 8 significant digits. 4. 4 significant digits. 5. 8 significant digits. 6. 7 significant digits. 7. 2 significant digits.
Explanation:
All nonzero digits are significant. All zeros before nonzeros are insignificant. All zeros after nonzeros are insignificant unless they are made for precision of some data. So 405000 may have 3 or 6 significant figures. But usually all zero figures after significant digits are significant.