<span>If you plug in 0, you get the indeterminate form 0/0. You can, therefore, apply L'Hopital's Rule to get the limit as h approaches 0 of e^(2+h),
which is just e^2.
</span><span><span><span>[e^(<span>2+h) </span></span>− <span>e^2]/</span></span>h </span>= [<span><span><span>e^2</span>(<span>e^h</span>−1)]/</span>h
</span><span>so in the limit, as h goes to 0, you'll notice that the numerator and denominator each go to zero (e^h goes to 1, and so e^h-1 goes to zero). This means the form is 'indeterminate' (here, 0/0), so we may use L'Hoptial's rule:
</span><span>
=<span>e^2</span></span>
Answer:
(A) Yes, since the test statistic is in the rejection region defined by the critical value, reject the null. The claim is the alternative, so the claim is supported.
Step-by-step explanation:
Null hypothesis: The wait time before a call is answered by a service representative is 3.3 minutes.
Alternate hypothesis: The wait time before a call is answered by a service representative is less than 3.3 minutes.
Test statistic (t) = (sample mean - population mean) ÷ sd/√n
sample mean = 3.24 minutes
population mean = 3.3 minutes
sd = 0.4 minutes
n = 62
degree of freedom = n - 1 = 62 - 1 = 71
significance level = 0.08
t = (3.24 - 3.3) ÷ 0.4/√62 = -0.06 ÷ 005 = -1.2
The test is a one-tailed test. The critical value corresponding to 61 degrees of freedom and 0.08 significance level is 1.654
Conclusion:
Reject the null hypothesis because the test statistic -1.2 is in the rejection region of the critical value 1.654. The claim is contained in the alternative hypothesis, so it is supported.
Roughly 25 because she basically ate 4 slices