1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ainat [17]
3 years ago
15

2,17,82,257,626,1297 next one please ?​

Mathematics
1 answer:
In-s [12.5K]3 years ago
4 0

The easy thing to do is notice that 1^4 = 1, 2^4 = 16, 3^4 = 81, and so on, so the sequence follows the rule n^4+1. The next number would then be fourth power of 7 plus 1, or 2402.

And the harder way: Denote the <em>n</em>-th term in this sequence by a_n, and denote the given sequence by \{a_n\}_{n\ge1}.

Let b_n denote the <em>n</em>-th term in the sequence of forward differences of \{a_n\}, defined by

b_n=a_{n+1}-a_n

for <em>n</em> ≥ 1. That is, \{b_n\} is the sequence with

b_1=a_2-a_1=17-2=15

b_2=a_3-a_2=82-17=65

b_3=a_4-a_3=175

b_4=a_5-a_4=369

b_5=a_6-a_5=671

and so on.

Next, let c_n denote the <em>n</em>-th term of the differences of \{b_n\}, i.e. for <em>n</em> ≥ 1,

c_n=b_{n+1}-b_n

so that

c_1=b_2-b_1=65-15=50

c_2=110

c_3=194

c_4=302

etc.

Again: let d_n denote the <em>n</em>-th difference of \{c_n\}:

d_n=c_{n+1}-c_n

d_1=c_2-c_1=60

d_2=84

d_3=108

etc.

One more time: let e_n denote the <em>n</em>-th difference of \{d_n\}:

e_n=d_{n+1}-d_n

e_1=d_2-d_1=24

e_2=24

etc.

The fact that these last differences are constant is a good sign that e_n=24 for all <em>n</em> ≥ 1. Assuming this, we would see that \{d_n\} is an arithmetic sequence given recursively by

\begin{cases}d_1=60\\d_{n+1}=d_n+24&\text{for }n>1\end{cases}

and we can easily find the explicit rule:

d_2=d_1+24

d_3=d_2+24=d_1+24\cdot2

d_4=d_3+24=d_1+24\cdot3

and so on, up to

d_n=d_1+24(n-1)

d_n=24n+36

Use the same strategy to find a closed form for \{c_n\}, then for \{b_n\}, and finally \{a_n\}.

\begin{cases}c_1=50\\c_{n+1}=c_n+24n+36&\text{for }n>1\end{cases}

c_2=c_1+24\cdot1+36

c_3=c_2+24\cdot2+36=c_1+24(1+2)+36\cdot2

c_4=c_3+24\cdot3+36=c_1+24(1+2+3)+36\cdot3

and so on, up to

c_n=c_1+24(1+2+3+\cdots+(n-1))+36(n-1)

Recall the formula for the sum of consecutive integers:

1+2+3+\cdots+n=\displaystyle\sum_{k=1}^nk=\frac{n(n+1)}2

\implies c_n=c_1+\dfrac{24(n-1)n}2+36(n-1)

\implies c_n=12n^2+24n+14

\begin{cases}b_1=15\\b_{n+1}=b_n+12n^2+24n+14&\text{for }n>1\end{cases}

b_2=b_1+12\cdot1^2+24\cdot1+14

b_3=b_2+12\cdot2^2+24\cdot2+14=b_1+12(1^2+2^2)+24(1+2)+14\cdot2

b_4=b_3+12\cdot3^2+24\cdot3+14=b_1+12(1^2+2^2+3^2)+24(1+2+3)+14\cdot3

and so on, up to

b_n=b_1+12(1^2+2^2+3^2+\cdots+(n-1)^2)+24(1+2+3+\cdots+(n-1))+14(n-1)

Recall the formula for the sum of squares of consecutive integers:

1^2+2^2+3^2+\cdots+n^2=\displaystyle\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}6

\implies b_n=15+\dfrac{12(n-1)n(2(n-1)+1)}6+\dfrac{24(n-1)n}2+14(n-1)

\implies b_n=4n^3+6n^2+4n+1

\begin{cases}a_1=2\\a_{n+1}=a_n+4n^3+6n^2+4n+1&\text{for }n>1\end{cases}

a_2=a_1+4\cdot1^3+6\cdot1^2+4\cdot1+1

a_3=a_2+4(1^3+2^3)+6(1^2+2^2)+4(1+2)+1\cdot2

a_4=a_3+4(1^3+2^3+3^3)+6(1^2+2^2+3^2)+4(1+2+3)+1\cdot3

\implies a_n=a_1+4\displaystyle\sum_{k=1}^3k^3+6\sum_{k=1}^3k^2+4\sum_{k=1}^3k+\sum_{k=1}^{n-1}1

\displaystyle\sum_{k=1}^nk^3=\frac{n^2(n+1)^2}4

\implies a_n=2+\dfrac{4(n-1)^2n^2}4+\dfrac{6(n-1)n(2n)}6+\dfrac{4(n-1)n}2+(n-1)

\implies a_n=n^4+1

You might be interested in
What is 15/6 in simplest form?
motikmotik
In fraction 1/2 in decimal 2.5
5 0
3 years ago
Read 2 more answers
Of 30 students 1/3 play sports. Of those who play sports 2/3 play soccer. How may students play soccer?
Orlov [11]

Answer:

4

Step-by-step explanation:

1/3 of 30 students play sport

30×1/3

= 10

2/5 of this number plays soccer

10×2/5

= 20/5

= 4

5 0
3 years ago
The estimated velocity v (in miles per hour) of a car at the end of a drag race is v=234\sqrt[3]{p/w} , where p is the horsepowe
Dennis_Churaev [7]

Answer:

299 miles per hour

Step-by-step explanation:

v=\frac{234}{\sqrt[3]{\frac{p}{w}}}

v=\frac{234}{\sqrt[3]{\frac{1311}{2744}}}

v\approx299

Therefore, the velocity of the car at the end of a drag race is 299 miles per hour

8 0
3 years ago
Express the values below I’m scientific notation 52,800g, 255.6m, 0.04109cm!?
Trava [24]

Answer:

1) 5.28 x 10^4 g

2)2.556 x 10^2 m

3)4.109 × 10^-2cm

Have a nice day!!!!!

3 0
2 years ago
Read 2 more answers
Solve for x.<br><br> 0.5x + 78.2 = 287
vladimir2022 [97]
0.5x + 78.2 = 287
          -78.2  -78.2

subtract 78.2 on both sides you will then get 0.5x = 208.8 you will then divide by 0.5 and the answer is x =  417.6
3 0
3 years ago
Read 2 more answers
Other questions:
  • Solve this and explain it for me
    13·1 answer
  • What is this answer plz
    10·2 answers
  • What is the area help me plz
    13·1 answer
  • Find the intersection point for the following liner function f(x)= 2x+3 g(x)=-4x-27
    5·1 answer
  • -3(x-4) &lt;6<br> .<br> What is the inequality
    6·1 answer
  • What is the mean of the data set? {32, 33, 34, 34, 36, 38, 38, 38, 40, 42}
    15·2 answers
  • one of the world's largest stained glass windows is at kennedy International Airport in New York. It is a rectangle with a heigh
    14·1 answer
  • What is the sum of 1.015 and119
    14·1 answer
  • Find the balance in an account with $4,250 principal earning 3% interest compounded quarterly after 12 years. Round your answer
    8·1 answer
  • Marissa deposited $900 in her savings account. the rate of simple interest is 5% per year. find the balance at the end of 4 year
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!