Answer:
4.8x10⁻³ Liters are required
Explanation:
Molarity is an unit of concentration in chemistry defined as the ratio between moles of solute (In this case, silver nitrate) and liters of solution.
The 0.50M solution contains 0.50 moles of silver nitrate per liter of solution.
To provide 2.4x10⁻³ moles Silver nitrate are required:
2.4x10⁻³ moles * (1L / 0.50 moles) =
<h3>4.8x10⁻³ Liters are required</h3>
Answer:
Explanation:
The period law state that when elements are listed in order of their atomic numbers, the elements fall into recurring groups, so that there is a recurrence of similar properties at regular intervals.
Na and K in the periodic table fall into the same group, this is because they both have one electrons in their outermost shell.
Na 11 -1s2 2s2 2p6 3s1
K 19 - 1s2 2s2 2p6 3s2 3p6 4s1
They share similar chemical and physical properties. Na and K are very reactive metals, they can loose/donate their outermost electron to non metals in other to attain stable octet state.
The form ionic compound when they react with non metals.
Answer:
Option B will require a shorter wave length of light.
Explanation:
The bonding between Ozone (O3) and Oxygen (O2) can be used to explain why the breaking of oxygen into Oxygen radicals will require a shorter wave length.
- The bond between Oxygen (O2) is a double bond while Ozone (O3) has an intermediate bond between a double bond and a single bond.
- The bond order of Oxygen (O2) is equals 2 while that of Ozone (O3) is 1.5. Since the bond order of oxygen is higher, it will require more energy to break the bond compared to breaking the Ozone (O3) bond.
- Recall that Energy is inversely proportional to wave length.
- So it will require a shorter wave length to break the Oxygen (O2) into its radicals.
Answer:
attached here is the diagram of the solution
Explanation:
Answer:
B
Explanation:
The general equation for the reaction of a carboxylic acid with an alkanol to form an ester is shown below;
RCOOH + ROH ------> RCOOR + H2O
Hence; the reactant carboxylic acid can only be the compound (CH3)2-CH-CH2-COOH in accordance with the general reaction equation shown above.
Hence the reaction is;
(CH3)2-CH-CH2-COOH + CH3-CH2OH -------> CH3CH2 OCO-CH2-CH-(CH3)2