Answer:
a) possible progressions are 5
b) the smallest and largest possible values of the first term are 16 and 82
Step-by-step explanation:
<u>Sum of terms:</u>
- Sₙ = n/2(a₁ + aₙ) = n/2(2a₁ + (n-1)d)
- S₂₀ = 20/2(2a₁ + 19d) = 10(2a₁ + 19d)
- 2020 = 10(2a₁ + 19d)
- 202 = 2a₁ + 19d
<u>In order a₁ to be an integer, d must be even number, so d = 2k</u>
- 202 = 2a₁ + 38k
- 101 = a₁ + 19k
<u>Possible values of k= 1,2,3,4,5</u>
- k = 1 ⇒ a₁ = 101 - 19 = 82
- k = 2 ⇒ a₁ = 101 - 38 = 63
- k = 3 ⇒ a₁ = 101 - 57 = 44
- k = 4 ⇒ a₁ = 101 - 76 = 25
- k = 5 ⇒ a₁ = 101 - 95 = 16
<u>As per above, </u>
- a) possible progressions are 5
- b) the smallest and largest possible values of the first term are 16 and 82
Answer:
Independent Variable: Number of hours
Dependent Variable: Cost
Equation: C = 2x + 6
Step-by-step explanation:
The independent variable (x) is the variable that is manipulated. In this instance, that would be the number of hours a person rents out the bike.
The dependent variable (C) is the variable that is manipulated depending on the value of the independent variable. In this instance, that would be the total cost for renting the bike.
The total equation would be C = 2x + 6. The coefficient, 2, represents the charge of $2 per hour and the 6 represents the starting charge of $6.
You just break it up, do 20x8 then another 20x8 then 5x8
Answer:
For this case the p value calculated is higher than the significance level used of 0.05 so then we have enough evidence to FAIL to reject the null hypothesis and the best conclusion for this case would be:
a) do not reject the null hypothesis and conclude that the mean IQ is not greater than 100
Step-by-step explanation:
Information given
We want to verify if he mean IQ of employees in an organization is greater than 100 , the system of hypothesis would be:
Null hypothesis:
Alternative hypothesis:
The statistic for this case is given by:
(1)
The statistic calculated for this case 
The degrees of freedom are given by:
Now we can find the p value using tha laternative hypothesis and we got:
For this case the p value calculated is higher than the significance level used of 0.05 so then we have enough evidence to FAIL to reject the null hypothesis and the best conclusion for this case would be:
a) do not reject the null hypothesis and conclude that the mean IQ is not greater than 100