Answer:
The line between 1 5/8 and 1 7/8 is exactly 1 3/4.
Step-by-step explanation:
1 3/4 = 1 6/8
Since the lines are every 1/8 of a cup, there are a total of 16 lines indicating 1/8 of a cup for a total of two full cups.
1/8 less than 1 6/8 is 1 5/8.
1/8 more than 1 6/8 is 1 7/8.
The line between 1 5/8 and 1 7/8 is exactly 1 3/4.
We have a sample of 28 data points. The sample mean is 30.0 and the sample standard deviation is 2.40. The confidence level required is 98%. Then, we calculate α by:

The confidence interval for the population mean, given the sample mean μ and the sample standard deviation σ, can be calculated as:
![CI(\mu)=\lbrack x-Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt[]{n}},x+Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt[]{n}}\rbrack](https://tex.z-dn.net/?f=CI%28%5Cmu%29%3D%5Clbrack%20x-Z_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ccdot%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D%2Cx%2BZ_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ccdot%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D%5Crbrack)
Where n is the sample size, and Z is the z-score for 1 - α/2. Using the known values:
![CI(\mu)=\lbrack30.0-Z_{0.99}\cdot\frac{2.40}{\sqrt[]{28}},30.0+Z_{0.99}\cdot\frac{2.40}{\sqrt[]{28}}\rbrack](https://tex.z-dn.net/?f=CI%28%5Cmu%29%3D%5Clbrack30.0-Z_%7B0.99%7D%5Ccdot%5Cfrac%7B2.40%7D%7B%5Csqrt%5B%5D%7B28%7D%7D%2C30.0%2BZ_%7B0.99%7D%5Ccdot%5Cfrac%7B2.40%7D%7B%5Csqrt%5B%5D%7B28%7D%7D%5Crbrack)
Where (from tables):

Finally, the interval at 98% confidence level is:
The answer is y=-2/3+2 because the line crosses at 2, which is the y-intercept. It goes down two times and runs three times making the slope -2/3.
I think 100.does this help
1.7 times 10 to the 9 power
1.52 times10 to the 8 power