The expected value per game is -0.26. Over 1000 games, you can expect to lose $263.16.
To find the expected value, we multiply the probability of winning by the amount of winnings, the probability of losing by the amount of loss, and adding those together.
We have a 1/38 chance of winning; 1/38(175) = $4.61. We also have a 37/38 chance of losing; 37/38(5) = $4.87.
$4.61-$4.87 = -$0.26 (rounded)
To five decimal places, our answer is -0.26136; multiplied by 1000 games, this is $261.36 lost.
K= -3
3y = x+6 can be rewritten as y = 1/3x + 2
a perpendicular slope is the opposite reciprocal of the original slope
so instead of 1/3 it would be -3
therefore. k must equal -3 to be perpendicular to 3y = x+6
HD = 10.5
Step-by-step explanation:
Given BH = 3, GH = 2, BF = 10
Step 1: To find HF:
HF = BF – BH
HF = 10 – 3
HF = 7
Step 2: To find HD:
We know that if two chords intersects inside a circle, the product of the lengths of the segments of one chord equals the product of the lengths of the segments of the other chord.
⇒ GH × HD = BH × HF
⇒ 2 × HD = 3 × 7
⇒ HD = 10.5
Hence, the value of HD = 10.5.
Answer:
x^2+8x+<u>1</u><u>6</u><u>=</u><u>(</u><u>x-4</u><u>)</u><u>^</u><u>2</u>
<em><u>EXPLANATION</u></em><em><u>:</u></em>
<u>(</u><u>a</u><u>+</u><u>b</u><u>)</u><u>^</u><u>2</u><u>=</u><u>a2</u><u>+</u><u>2</u><u>.</u><u>a</u><u>.</u><u>b</u><u>+</u><u>b2</u>
<u>we</u><u> </u><u>have</u><u> </u><u>to</u><u> </u><u>break</u><u> </u><u>the</u><u> </u><u>middle</u><u> </u><u>term</u><u> </u><u>i</u><u>n</u><u> </u><u>2</u><u>a</u><u>b</u><u> </u><u>here</u><u> </u><u>a</u><u> </u><u>is</u><u> </u><u>x</u><u> </u><u>then</u><u> </u><u>2</u><u>x</u><u>b</u><u>=</u><u>8</u><u>x</u><u>,</u><u> </u><u>=</u><u>></u><u> </u><u>b</u><u>=</u><u>4</u><u>,</u><u> </u><u>but</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>and</u><u> </u><u>b</u><u> </u><u>to</u><u> </u><u>get</u><u> </u><u>the</u><u> </u><u>req</u><u>uired</u><u> </u><u>equation</u><u>!</u>
<h3>
Answer:</h3>
4, 8, 8
<h3>
Step-by-step explanation:</h3>
At each node, three faces meet. One is square (4 sides); the other two are octagons (8 sides). Hence the tiling can be named with three numbers: 4, 8, 8.