Answer: 12:14 pm.
Explanation: 27 minutes after when Sally started, 11:48, is 12:14.
Just do 45x0.2 then take that number off of $45 thats your answer
Answer:
Step-by-step explanation:
A1. C = 104°, b = 16, c = 25
Law of Sines: B = arcsin[b·sinC/c} ≅ 38.4°
A = 180-C-B = 37.6°
Law of Sines: a = c·sinA/sinC ≅ 15.7
A2. B = 56°, b = 17, c = 14
Law of Sines: C = arcsin[c·sinB/b] ≅43.1°
A = 180-B-C = 80.9°
Law of Sines: a = b·sinA/sinB ≅ 20.2
B1. B = 116°, a = 11, c = 15
Law of Cosines: b = √(a² + c² - 2ac·cosB) = 22.2
A = arccos{(b²+c²-a²)/(2bc) ≅26.5°
C = 180-A-B = 37.5°
B2. a=18, b=29, c=30
Law of Cosines: A = arccos{(b²+c²-a²)/(2bc) ≅ 35.5°
Law of Cosines: B = arccos[(a²+c²-b²)/(2ac) = 69.2°
C = 180-A-B = 75.3°
After striking a pair of arcs from each endpoint of a line segment, just join the intersection point of the 1st pair (above the segment) with the intersection point
of the 2nd pair (under the segment)
And this is how you construct the segment's perpendicular bisector
Answer: 58 degrees
Explanation: 180-122=58