Answer: 2 - 2*sin³(θ) - √1 -sin²(θ)
Step-by-step explanation: In the expression
cos(theta)*sin2(theta) − cos(theta)
sin (2θ) = 2 sin(θ)*cos(θ) ⇒ cos(θ)*2sin(θ)cos(θ) - cos(θ)
2cos²(θ)sin(θ) - cos(θ) if we use cos²(θ) = 1-sin²(θ)
2 [ (1 - sin²(θ))*sin(θ)] - cos(θ)
2 - 2sin²(θ)sin(θ) - cos(θ) ⇒ 2-2sin³(θ)-cos(θ) ; cos(θ) = √1 -sin²(θ)
2 - 2*sin³(θ) - √1 -sin²(θ)
Answer:
simple , isn't it? try to learn
Answer: 0.82
Step-by-step explanation:
We know that :
For any event A , the probability of not getting A is given by :-
P(not A)= 1- P(A)
Given : The probability that a student chosen at random from your class is a psychology major is P( psychology major) =0.18.
Then, the probability that a student chosen at random from your class is not a psychology major will be :
P(not psychology major)= 1 - P(psychology major)
= 1-0.18=0.82
Hence, the probability that a student chosen at random from your class is not a psychology major= 0.82
9514 1404 393
Answer:
14.1 years
Step-by-step explanation:
Use the compound interest formula and solve for t. Logarithms are involved.
A = P(1 +r/n)^(nt)
amount when P is invested for t years at annual rate r compounded n times per year.
Using the given values, we have ...
13060 = 8800(1 +0.028/365)^(365t)
13060/8800 = (1 +0.028/365)^(365t) . . . . divide by P=8800
Now we take logarithms to make this a linear equation.
log(13060/8800) = (365t)log(1 +0.028/365)
Dividing by the coefficient of t gives us ...
t = log(13060/8800)/(365·log(1 +0.028/365)) ≈ 0.171461/0.0121598
t ≈ 14.1
It would take about 14.1 years for the value to reach $13,060.