Answer:
C(3,-4), r=4*sqrt(2)
Step-by-step explanation:
C(p, q)
x^2+y^2+dx+ey+f=0
p=-d/2, q=-e/2, r^2=p^2+q^2-f
x^2+y^2 - 6x+8y-7=0
p=-(-6)/2=6/2=3
q=-8/2=-4
r^2=3^2 +(-4)^2+7
r^2=9+16+7
r^2=32
r=sqrt(32)
r=sqrt(16*2)
r=4*sqrt(2)
-1\4
Step-by-step explanation:
find the gradient of the line
I cant see the image...but I take it that the midpoint is (9,8) and the endpoint S is (10,10) and ur looking for the other endpoint R.
midpoint formula : (x1 + x2) / 2, (y1 + y2) / 2
(10,10)....x1 = 10 and y1 = 10
(x,y)....x2 = x and y2 = y
so we sub
(10 + x) / 2, (10 + y) / 2 = 9/8
(10 + x) / 2 = 9
10 + x = 9 * 2
10 + x = 18
x = 18 - 10
x = 8
(10 + y) / 2 = 8
10 + y = 8 * 2
10 + y = 16
y = 16 - 10
y = 6
so endpoint R has coordinates of (8,6) <===
2x + 100 = 5x + 55
3x = 45
x = 15
2(15) + 100 = 130
180-130 = 50
so angle 2 is 50 degrees