Answer:

Step-by-step explanation:
Since we're looking at perpendicular lines, the slope of the new line is the reciprocal of the original line.
So the slope of our new line is 
So far, we are looking at 
Now we need to find the b value by plugging in the given point.

So the final equation is 
Answer:
1 .4x2-9= 2x+3,2x-3
2 .16x2-1=4x-1,4x+1
3 .16x2-4=4(2x+1)(2x-1)
4 .4x2-1=(2x+1)(2x-1)
Step-by-step explanation:
16x² − 1 = (4x − 1)(4x + 1) ; 16x² − 4 = 4(2x + 1)(2x − 1); 4x² − 1 = (2x + 1)(2x − 1) ;
4x² − 9 = (2x + 3)(2x − 3)
16x² − 1 is the difference of squares. This is because 16x² is a perfect square, as is 1. To find the factors of the difference of squares, take the square root of each square; one factor will be the sum of these and the other will be the difference.
The square root of 16x² is 4x and the square root of 1 is 1; this gives us (4x-1)(4x+1).
16x² − 4 is also the difference of squares. The difference of 16x² is 4x and the square root of 4 is 2; this gives us (4x-2)(4x+2). However, we can also factor a 2 out of each of these binomials; this gives us
2(2x-1)(2)(2x+1) = 2(2)(2x-1)(2x+1) = 4(2x-1)(2x+1)
4x² − 1 is also the difference of squares. The square root of 4x² is 2x and the square root of 1 is 1; this gives us (2x-1)(2x+1).
4x² − 9 is also the difference of squares. The square root of 4x² is 2x and the square root of 9 is 3; this gives us (2x-3)(2x+3).
Answer:16
Step-by-step explanation:
Check the picture below.
so the rhombus has the diagonals of AC and BD, now keeping in mind that the diagonals bisect each, namely they cut each other in two equal halves, let's find the length of each.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ A(\stackrel{x_1}{-4}~,~\stackrel{y_1}{-2})\qquad C(\stackrel{x_2}{6}~,~\stackrel{y_2}{8})\qquad \qquad % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ AC=\sqrt{[6-(-4)]^2+[8-(-2)]^2}\implies AC=\sqrt{(6+4)^2+(8+2)^2} \\\\\\ AC=\sqrt{10^2+10^2}\implies AC=\sqrt{10^2(2)}\implies \boxed{AC=10\sqrt{2}}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AA%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B-2%7D%29%5Cqquad%20%0AC%28%5Cstackrel%7Bx_2%7D%7B6%7D~%2C~%5Cstackrel%7By_2%7D%7B8%7D%29%5Cqquad%20%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAC%3D%5Csqrt%7B%5B6-%28-4%29%5D%5E2%2B%5B8-%28-2%29%5D%5E2%7D%5Cimplies%20AC%3D%5Csqrt%7B%286%2B4%29%5E2%2B%288%2B2%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAC%3D%5Csqrt%7B10%5E2%2B10%5E2%7D%5Cimplies%20AC%3D%5Csqrt%7B10%5E2%282%29%7D%5Cimplies%20%5Cboxed%7BAC%3D10%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%0A-------------------------------)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ B(\stackrel{x_1}{-2}~,~\stackrel{y_1}{6})\qquad D(\stackrel{x_2}{4}~,~\stackrel{y_2}{0})\qquad \qquad BD=\sqrt{[4-(-2)]^2+[0-6]^2} \\\\\\ BD=\sqrt{(4+2)^2+(-6)^2}\implies BD=\sqrt{6^2+6^2} \\\\\\ BD=\sqrt{6^2(2)}\implies \boxed{BD=6\sqrt{2}}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AB%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B6%7D%29%5Cqquad%20%0AD%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B0%7D%29%5Cqquad%20%5Cqquad%20BD%3D%5Csqrt%7B%5B4-%28-2%29%5D%5E2%2B%5B0-6%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ABD%3D%5Csqrt%7B%284%2B2%29%5E2%2B%28-6%29%5E2%7D%5Cimplies%20BD%3D%5Csqrt%7B6%5E2%2B6%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ABD%3D%5Csqrt%7B6%5E2%282%29%7D%5Cimplies%20%5Cboxed%7BBD%3D6%5Csqrt%7B2%7D%7D)
that simply means that each triangle has a side that is half of 10√2 and another side that's half of 6√2.
namely, each triangle has a "base" of 3√2, and a "height" of 5√2, keeping in mind that all triangles are congruent, then their area is,