Answer:
C. <em>c</em> is less than zero
Step-by-step explanation:
The parent radical function y=x^(1/n) has its point of inflection at the origin. The graph shows that point of inflection has been translated left and down.
<h3>Function transformation</h3>
The transformation of the parent function y=x^(1/n) into the function ...
f(x) = a(x +k)^(1/n) +c
represents the following transformations:
- vertical scaling by a factor of 'a'
- left shift by k units
- up shift by c units
<h3>Application</h3>
The location of the inflection point at (-3, -4) indicates it has been shifted left 3 units, and down 4 units. In the transformed function equation, this means ...
The graph says the value of c is less than zero.
__
<em>Additional comment</em>
Apparently, the value of 'a' is 2, and the value of n is 3. The equation of the graph seems to be ...
f(x) = 2(x +3)^(1/3) -4
One application of volume is determining the density of an object. Assume the object is made of a pure element (eg: gold). If we know the volume (v) of the object, and we know the mass (m), then we can use the formula D = m/v to figure out the density D. Knowing the volume is also handy to determine if the object can fit into a larger space or not. Another application is figuring out how much water is needed to fill up the inner space of the 3D solid (assuming it's hollow on the inside).
The surface area is handy to figure out how much material is needed to cover the outer surface. This material can be paint, paper, metal sheets, or whatever you can think of really. A good example is wrapping a present and the assumption is that there is no overlap.
Answer:
no clue buddy sry
Step-by-step explanation:
Use the quadratic formula -b+/-√b^2 -4(ac) / 2a
-4 +/- √(4^2 - 4(1*10) / (2*1)
X = -2 +/- i√6