Answer:
See explaination for the program code
Explanation:
The code below
Pseudo-code:
//each item ai is used at most once
isSubsetSum(A[],n,t)//takes array of items of size n, and sum t
{
boolean subset[n+1][t+1];//creating a boolean mtraix
for i=1 to n+1
subset[i][1] = true; //initially setting all first column values as true
for i = 2 to t+1
subset[1][i] = false; //initialy setting all first row values as false
for i=2 to n
{
for j=2 to t
{
if(j<A[i-1])
subset[i][j] = subset[i-1][j];
if (j >= A[i-1])
subset[i][j] = subset[i-1][j] ||
subset[i - 1][j-set[i-1]];
}
}
//returns true if there is a subset with given sum t
//other wise returns false
return subset[n][t];
}
Recurrence relation:
T(n) =T(n-1)+ t//here t is runtime of inner loop, and innner loop will run n times
T(1)=1
solving recurrence:
T(n)=T(n-1)+t
T(n)=T(n-2)+t+t
T(n)=T(n-2)+2t
T(n)=T(n-3)+3t
,,
,
T(n)=T(n-n-1)+(n-1)t
T(n)=T(1)+(n-1)t
T(n)=1+(n-1)t = O(nt)
//so complexity is :O(nt)//where n is number of element, t is given sum
<span>There should be no need to have white-collar employers just next to factories thanks to the Information Revolution, and it enabled executives to stay in home, write documents, and send them easily.</span>
Answer:
The answer is "Procedure"
Explanation:
In the given statement certain information is missing, that is choices, which can be described as follows:
a. procedure
b. software
c. data
d. hardware
e. memory
The procedure is a way, that accomplishes any task in the following steps, if there is a long process so, we divide this process into parts or modules to accomplish the task, and certain alternative was wrong, that can be described as follows:
- Software is a program, that is accomplished in the procedure.
- data, It describes all procedures.
- hardware, It is a device, in which we work.
- memory, It stores all the data in a procedure.
A sixteen bit microprocessor chip used in early IBM PCs. The Intel 8088 was a version with an eight-bit externaldata bus.
The Intel 8086 was based on the design of the Intel 8080 <span>and </span>Intel 8085 (it was source compatible with the 8080)with a similar register set, but was expanded to 16 bits. The Bus Interface Unit fed the instruction stream to theExecution Unit through a 6 byte prefetch queue, so fetch and execution were concurrent - a primitive form ofpipelining (8086 instructions varied from 1 to 4 bytes).
It featured four 16-bit general registers, which could also be accessed as eight 8-bit registers, and four 16-bit indexregisters (including the stack pointer). The data registers were often used implicitly by instructions, complicatingregister allocation for temporary values. It featured 64K 8-bit I/O (or 32K 16 bit) ports and fixed vectored interrupts.There were also four segment registers that could be set from index registers.
The segment registers allowed the CPU to access 1 meg of memory in an odd way. Rather than just supplyingmissing bytes, as most segmented processors, the 8086 actually shifted the segment registers left 4 bits and addedit to the address. As a result, segments overlapped, and it was possible to have two pointers with the same valuepoint to two different memory locations, or two pointers with different values pointing to the same location. Mostpeople consider this a brain damaged design.
Although this was largely acceptable for assembly language, where control of the segments was complete (it couldeven be useful then), in higher level languages it caused constant confusion (e.g. near/far pointers). Even worse, thismade expanding the address space to more than 1 meg difficult. A later version, the Intel 80386, expanded thedesign to 32 bits, and "fixed" the segmentation, but required extra modes (suppressing the new features) forcompatibility, and retains the awkward architecture. In fact, with the right assembler, code written for the 8008 canstill be run on the most <span>recent </span>Intel 486.
The Intel 80386 added new op codes in a kludgy fashion similar to the Zilog Z80 and Zilog Z280. The Intel 486added full pipelines, and clock doubling (like <span>the </span>Zilog Z280).
So why did IBM chose the 8086 series when most of the alternatives were so much better? Apparently IBM's own engineers wanted to use the Motorola 68000, and it was used later in the forgotten IBM Instruments 9000 Laboratory Computer, but IBM already had rights to manufacture the 8086, in exchange for giving Intel the rights to its bubble memory<span> designs.</span> Apparently IBM was using 8086s in the IBM Displaywriter word processor.
Other factors were the 8-bit Intel 8088 version, which could use existing Intel 8085-type components, and allowed the computer to be based on a modified 8085 design. 68000 components were not widely available, though it could useMotorola 6800 components to an <span>extent.
</span>
Hope this helps
Answer:
Following are the code in Java Language:
Scanner sc = new Scanner(System.in); // create a instance of scanner class
DecimalFormat frmt = new DecimalFormat("0.###"); // create a instance of // DecimalFormat class
System.out.println ("Enter the value: ");
double number = scan.nextDouble(); // Read the value by thje user
System.out.println (fmmt.format(Math.pow(number, 4))); // display the value
Explanation:
Following are the description of the code
- Create an instance scanner class i.e "sc".
- Create an instance of DecimalFormat class i.e "frmt".
- Read the value by the user in the "number" variable of type double by using the nextDouble()method.
- Finally, display the value by using System.out.println method. In this, we call the method format. The Math.pow() function is used to calculating the power up to the fourth value.