2^(1+2n)
2^(1+0) = 2
2^(1+2) = 2^3 = 8
2^(1+4) = 2^5 = 32
a. Answer: D: (∞, ∞)
R: (-∞, ∞)
<u>Step-by-step explanation:</u>
Theoretical domain is the domain of the equation (without an understanding of what the x-variable represents).
Theoretical range is the range of the equation given the domain.
c(p) = 25p
There are no restrictions on the p so the theoretical domain is All Real Numbers.
Multiplying 25 by All Real Numbers results in the range being All Real Numbers.
a) D: (∞, ∞)
R: (-∞, ∞)
*********************************************************************************
b. Answer: D: (0, 200)
R: (0, 5000)
<u>Step-by-step explanation:</u>
Practical domain is the domain of the equation WITH an understanding of what the x-variable represents.
Practical range is the range of the equation given the practical values of the domain.
The problem states that p represents the number of cups. Since we can't have a negative amount of cups, p ≥ 0. The problem also states that Bonnie will purchase a maximum of 200 cups. So, 0 ≤ p ≤ 200
The range is 25p → (25)0 ≤ (25)p ≤ (25)200
→ 0 ≤ 25p ≤ 5000
b) D: (0, 200)
R: (0, 5000)
The square root of 16 is 4
We know that
The formula for combinations is
C=n!/[(n-r)!*r!]
where
n is the total number of objects you choose from
r is the number that you choose to arrange
in this problem
n=15 students
r=4 students
C=15!/[(15-4)!*4!]-----> C=15!/[11!*4!]---> (15*14*13*12*11!)/(11!*4*3*2*1)
C=(15*14*13*12)/(24)----->C=1365
the answer is
1365
Answer:
6 ft
Step-by-step explanation:
6^3 = 216