We want to use a matrix to solve
-8x - 8y = -16
6x - 9y = -108
Before solving, simplify the equations as follows:
Divide the first equation by -8 to obtain
x + y = 2 (1)
Divide the second equation by 3 to obtain
2x - 3y = -36 (2)
In matrix form, the equations are

The determinant of the matrix is
D = (1)(-3) - (1)(2) = -5
Use Cramer's Rule.

Similalrly,

Answer: (-6, 8) or x = -6, y = 8
Answer/Step-by-step explanation:
7x- 4 = -182
<em>Step:</em>
Add 4 to both sides
7x - 4 + 4 = -182 + 4
Simplify
7x = -178
Divide both sides by 7
7x/7 = -178/7
Simplify
x = -178/7
Decimal form = -25.4285714286
<u><em>~lenvy~</em></u>
Answer:

Step-by-step explanation:
![if \: the \: question \: is \: f[g(4)] \\ then \: at \: first \: solve \: for \: g(4) \\ g(4) = {4}^{2} \\ f[g(4)] = 4( {4}^{2} ) + 2 \\ f[g(4)] = 4(16) + 2 \\ f[g(4)] =64 + 2 \\ f[g(4)] = \boxed{66}](https://tex.z-dn.net/?f=%20if%20%5C%3A%20the%20%5C%3A%20question%20%5C%3A%20is%20%5C%3A%20f%5Bg%284%29%5D%20%5C%5C%20then%20%5C%3A%20at%20%5C%3A%20first%20%5C%3A%20solve%20%5C%3A%20for%20%5C%3A%20g%284%29%20%5C%5C%20g%284%29%20%3D%20%20%7B4%7D%5E%7B2%7D%20%20%5C%5C%20f%5Bg%284%29%5D%20%20%3D%204%28%20%7B4%7D%5E%7B2%7D%20%29%20%2B%202%20%5C%5C%20f%5Bg%284%29%5D%20%20%3D%204%2816%29%20%2B%202%20%5C%5C%20f%5Bg%284%29%5D%20%20%3D64%20%2B%202%20%5C%5C%20%20%20f%5Bg%284%29%5D%20%20%3D%20%20%5Cboxed%7B66%7D)
Answer is 70
Absolute value is just the positive value so 35+35 = 70