Answer:
Step-by-step explanation:
Given that A be the event that a randomly selected voter has a favorable view of a certain party’s senatorial candidate, and let B be the corresponding event for that party’s gubernatorial candidate.
Suppose that
P(A′) = .44, P(B′) = .57, and P(A ⋃ B) = .68
From the above we can find out
P(A) = ![1-0.44 = 0.56](https://tex.z-dn.net/?f=1-0.44%20%3D%200.56)
P(B) = ![1-0.57 = 0.43](https://tex.z-dn.net/?f=1-0.57%20%3D%200.43)
P(AUB) = 0.68 =
![0.56+0.43-P(A\bigcap B)\\P(A\bigcap B)=0.30](https://tex.z-dn.net/?f=0.56%2B0.43-P%28A%5Cbigcap%20B%29%5C%5CP%28A%5Cbigcap%20B%29%3D0.30)
a) the probability that a randomly selected voter has a favorable view of both candidates=P(AB) = 0.30
b) the probability that a randomly selected voter has a favorable view of exactly one of these candidates
= P(A)-P(AB)+P(B)-P(AB)
![=0.99-0.30-0.30\\=0.39](https://tex.z-dn.net/?f=%3D0.99-0.30-0.30%5C%5C%3D0.39)
c) the probability that a randomly selected voter has an unfavorable view of at least one of these candidates
=P(A'UB') = P(AB)'
=![1-0.30\\=0.70](https://tex.z-dn.net/?f=1-0.30%5C%5C%3D0.70)
Answer: 19.20
Step-by-step explanation: What I did was figure out what 10% of 12 was (1.2) then multiplied it by 6 which was 7.2. Then I added that to 12 and got 19.2.
Let me know if this was helpful! :D
Answer:
<em>There are a few ways to solve systems of equations. </em>
- <em>There are a few ways to solve systems of equations. substitution</em>
- <em>There are a few ways to solve systems of equations. substitutionelimination</em>
- <em>There are a few ways to solve systems of equations. substitutionelimination </em><em>Graphically</em>
<em>If you are looking at a multiple choice question use the ordered pair to plug into the answer choices and whichever one balances out will be your answer. To assist you further I would need more information from the problem. </em>
Step-by-step explanation:
<em>hope</em><em> it</em><em> will</em><em> help</em><em> you</em><em> have</em><em> a</em><em> great</em><em> day</em><em> bye</em><em> and</em><em> Mark</em><em> brainlist</em><em> if</em><em> the</em><em> answer</em><em> is</em><em> correct</em><em> </em>
<em>
</em>
<em> </em><em>#</em><em>c</em><em>a</em><em>r</em><em>r</em><em>y</em><em> </em><em>on </em><em>learning</em>
3 blue + 3 yellow = 6 total marbles.
The probability of picking a blue one first would be 3/6 ( 3 blue out of 6 total marbles).
3/6 reduces to 1/2.
After picking the first marble, there would be 5 marbles left in the bag.
The probability of picking a yellow one would be 3/5 ( 3 yellow and 5 total marbles left).
The probability of picking a blue then a yellow then becomes:
1/2 x 3/5 = 3/10 = 0.30 = 30%
Answer:(4, 2)
Step-by-step explanation:
midpoint is between the x and y blah blah