First step is to make those fractions into Decimals by dividing then create a number line. and label each decimal least to greatest
Answer:
10 feet
Step-by-step explanation:
18-8=10 so the remaining 10 feet is what he needs to descend.
The relation represented by the arrow diagram is {(-3, 4), (-1, 5), (0, 7), (2, 2), (5, 7)}.
Option: C.
<u>Step-by-step explanation:</u>
A function is a relation in which each input value(domain) results in one output value(range). It is represented diagrammatically using the mapping method.
It shows how each element of domain and range are paired. That is like a flowchart it shows the input values marking its corresponding output value.
In the given diagram,
The values given in the left are domain and values given in the right are range.
Thus, -3 marks to 4, then can be written as (-3,4).
Similarly,
-1 marks 5 = (-1,5).
0 marks 7= (0,7).
2 marks 2= (2,2).
5 marks 7 =(5,7).
⇒ The complete points sequence is {(-3, 4), (-1, 5), (0, 7), (2, 2), (5, 7)}.
The roots of the polynomial <span><span>x^3 </span>− 2<span>x^2 </span>− 4x + 2</span> are:
<span><span>x1 </span>= 0.42801</span>
<span><span>x2 </span>= −1.51414</span>
<span><span>x3 </span>= 3.08613</span>
x1 and x2 are in the desired interval [-2, 2]
f'(x) = 3x^2 - 4x - 4
so we have:
3x^2 - 4x - 4 = 0
<span>x = ( 4 +- </span><span>√(16 + 48) </span>)/6
x_1 = -4/6 = -0.66
x_ 2 = 2
According to Rolle's theorem, we have one point in between:
x1 = 0.42801 and x2 = −1.51414
where f'(x) = 0, and that is <span>x_1 = -0.66</span>
so we see that Rolle's theorem holds in our function.