Answer:
I think this would be 182
Step-by-step explanation:
Answer:
Step-by-step explanation:
The mean SAT score is
, we are going to call it \mu since it's the "true" mean
The standard deviation (we are going to call it
) is

Next they draw a random sample of n=70 students, and they got a mean score (denoted by
) of 
The test then boils down to the question if the score of 613 obtained by the students in the sample is statistically bigger that the "true" mean of 600.
- So the Null Hypothesis 
- The alternative would be then the opposite 
The test statistic for this type of test takes the form

and this test statistic follows a normal distribution. This last part is quite important because it will tell us where to look for the critical value. The problem ask for a 0.05 significance level. Looking at the normal distribution table, the critical value that leaves .05% in the upper tail is 1.645.
With this we can then replace the values in the test statistic and compare it to the critical value of 1.645.

<h3>since 2.266>1.645 we can reject the null hypothesis.</h3>
42/6 but if you want to simplify, it's 7
From the given question we come to know of certain number of facts and they are:
At 1:00 PM the water level of the pond was = 13 inches
At 1:30 PM the water level of the pond was = 18 inches
At 2:30 PM the water level of the pond was = 28 inches
From the above given facts we can easily find the amount of water changing every half an hour.
Amount of increase in water from 1:00PM to 1:30 PM = (18 - 13) inches
= 5 inches
Amount of increase in water level from 1:30PM to 2:30PM = (28 -18) inches
= 10 inches
From the above two deductions we can come to the conclusion the the constant rate of change in water level is 5 inches for every half an hour.