F(x)=(2/3)x^1.5
The centroid position along the x-axis can be obtained by
integrating the function * x to get the moment about the y-axis,
then divide by the area of the graph,
all between x=0 to x=3.5m.
Expressed mathematically,
x_bar=(∫f(x)*x dx )/(∫ f(x) dx limits are between x=0 and x=3.5m
=15.278 m^3 / 6.1113 m^2
=2.500 m
Answer:
5 sq. ft.
Step-by-step explanation:
To find the area of a rectangle, use this formula: A = lw.
Because you know two side lengths of the window, you can just plug in the numbers to the formula.
But not yet! You need to convert the given lengths into feet first.
You know that there are 12 inches in 1 foot.
So:
24 inches ÷ 12 inches/foot = 2 feet
30 inches ÷ 12 inches/foot = 2.5 feet
Alright, now you can plug in these lengths into the formula.
A = (2) (2.5) = 5 sq. ft.
The question asks you to round, but there is nothing to round, so you are done here.
Answer:
The period of the sine curve is the length of one cycle of the curve. The natural period of the sine curve is 2π. So, a coefficient of b=1 is equivalent to a period of 2π. To get the period of the sine curve for any coefficient b, just divide 2π by the coefficient b to get the new period of the curve.
Step-by-step explanation:
Answer: 110, 35, 70, G, J, F, E, B, A, H, C, D, I
Step-by-step explanation:
8. For number 8, you will be using the exterior angle theorem. The exterior angle theorem states that the exterior angle equals the two angles inside the given triangle. Since we have 50 and 60, you will add 50 + 60 to get 110.
9. In this problem, you shall use the vertical angle theorem. The vertical angle theorem is simply that any angles vertical from one another are congruent. So a will be also 35 degrees.
10. This is an image depicting two lines cut by a transversal, creating multiple congruent angles. With this, you will be using the alternate interior angle theorem. Alternate interior angles are angles on different sides of the transversal but inside both of the lines that were cut into, as shown above. So, b will also equal 70 degrees.
Part B:
1. G
2. J
3. F
4. E
5. B
6. A
7. H
8. C
9. D
10. I