To determine the ratio, we need to know the formula of the area of an hexagon in terms of the length of its sides. We cannot directly conclude that the ratio would be 3, the same as that of the ratio of the lengths of the side, since it may be that the relationship of the area and length is not equal. The area of a hexagon is calculated by the expression:
A = (3√3/2) a^2
So, we let a1 be the length of the original hexagon and a2 be the length of the new hexagon.
A2/A1 = (3√3/2) a2^2 / (3√3/2) a1^2
A2/A1 = (a2 / a1)^2 = 3^2 = 9
Therefore, the ratio of the areas of the new and old hexagon would be 9.
We will use distribution
we will multiply 6 to each variable and number in the parenthesis.
6 times x plus 6 times 4
which is 6x +24
C.) 27 and a half. 12 minutes times 5 equals an hour so 5 and a half pages times 5 equals 27 and a half pages per hour.
R(x) = 60x - 0.2x^2
The revenue is maximum when the derivative of R(x) = 0.
dR(x)/dx = 60 - 0.4x = 0
0.4x = 60
x = 60/0.4 = 150
Therefore, maximum revenue is 60(150) - 0.2(150)^2 = 9000 - 4500 = $4,500
Maximum revenue is $4,500 and the number of units is 150 units