Point-slope form of a line: We need a point (x₀,y₀) and the slope "m";
y-y₀=m(x-x₀)
We have the next equation of line:
y=1/2 x-2 (slope-intercept form y=mx+b)
the slope of this line is 1/2 (m=1/2)
And any one point could be:
if x=0; then y=1/2 (0)-2=-2 (0,-2)
Therefore, we already have the point (0-,2) and the slope (m=1/2)
y-y₀=m(x-x₀)
y+2=1/2(x-0)
Answer: the point slope form of y=1/2 x-2; would be:
y+2=1/2(x-0)
Answer:
37
Step-by-step explanation:
The first thing is to calculate critical z factor
the alpha and the critical z score for a confidence level of 90% is calculated as follows:
two sided alpha = (100% - 90%) / 200 = 0.05
critical z factor for two sided alpha of .05 is calculated as follows:
critical z factor = z factor for (1 - .05) = z factor for (.95) which through the attached graph becomes:
critical z factor = 2.58
Now we have the following formula:
ME = z * (sd / sqrt (N) ^ (1/2))
where ME is the margin of error and is equal to 6, sd is the standard deviation which is 14 and the value of z is 2.58
N the sample size and we want to know it, replacing:
6 = 2.58 * (14 / (N) ^ (1/2))
solving for N we have:
N = (2.58 * 14/6) ^ 2
N = 36.24
Which means that the sample size was 37.
Answer:
A.
Step-by-step explanation:
A fun way of solving it is by turning your image 90 degrees, and observing the original figure. You can also solve it by checking the points.
(I am sorry if this wasn't very good.)
The equation of the line containing (- 4,5) and perpendicular to the line 5x - 3y = 4 is y = -3 / 5 x + 13 / 5
<h3>How to find the equation of a line?</h3>
The equation of a line can be represented as follows:
y = mx + b
where
Therefore, the equation passes through (-4, 5) and perpendicular to 5x - 3y = 4
Hence,
perpendicular lines follows the rule below:
m₁m₂ = -1
Hence,
5x - 3y = 4
5x - 4 = 3y
y = 5/ 3 x - 4 / 3
m₁ = 5 / 3
5/3 m₂ = -1
m₂ = - 3 / 5
Hence,
using (-4, 5)
5 = - 3 / 5 (-4) + b
5 = 12 / 5 + b
b = 5 - 12 / 5 = 25 - 12 /5 = 13 / 5
Therefore,
y = -3 / 5 x + 13 / 5
learn more on equation of a line here: brainly.com/question/10727767
#SPJ1
Answer:
Dados dos ángulos vecinos, ambos son complementarios si la suma de sus medidas es igual a 90° y suplementarios si esa suma de medidas es igual a 180°. Puesto que uno de los ángulos es el ángulo agudo mencionado en el enunciado, es decir, un ángulo cuya medida es mayor que 0° y menor que 90°. Entonces, el ángulo complementario debe ser inevitablemente menor que el ángulo suplementario.
Step-by-step explanation:
Dados dos ángulos vecinos, ambos son complementarios si la suma de sus medidas es igual a 90° y suplementarios si esa suma de medidas es igual a 180°. Puesto que uno de los ángulos es el ángulo agudo mencionado en el enunciado, es decir, un ángulo cuya medida es mayor que 0° y menor que 90°. Entonces, el ángulo complementario debe ser inevitablemente menor que el ángulo suplementario.