Answer:
6194.84
Step-by-step explanation:
Using the formula for calculating accumulated annuity amount
F = P × ([1 + I]^N - 1 )/I
Where P is the payment amount. I is equal to the interest (discount) rate and N number of duration
For 40 years,
X = 100[(1 + i)^40 + (1 + i)^36 + · · ·+ (1 + i)^4]
=[100 × (1+i)^4 × (1 - (1 + i)^40]/1 − (1 + i)^4
For 20 years,
Y = A(20) = 100[(1+i)^20+(1+i)^16+· · ·+(1+i)^4]
Using X = 5Y (5 times the accumulated amount in the account at the ned of 20 years) and using a difference of squares on the left side gives
1 + (1 + i)^20 = 5
so (1 + i)^20 = 4
so (1 + i)^4 = 4^0.2 = 1.319508
Hence X = [100 × (1 + i)^4 × (1 − (1 + i)^40)] / 1 − (1 + i)^4
= [100×1.3195×(1−4^2)] / 1−1.3195
X = 6194.84
Answer:
<em>-26 or 14</em>
Step-by-step explanation:
Given that
Coordinate of point A is -6.
Length of AB = 20
To find:
Coordinates for the point B = ?
Solution:
We are given that:
AB = 20
In other words, we can use modulus function to define the distance between A and B:
|Coordinates of B - Coordinates of A| = 20
Let the coordinates of B = 
Kindly refer to the attached image for the given situation.
Point B might be either on the left or on the right side of A.
That means:

Now, let us have a look at the modulus function:

So,



Therefore, the answer is:
<em>-26 or 14</em>
Answer:
800,000
Step-by-step explanation:
The 9 makes the 7 round up making it 800,000.
Answer:
1st one is 9x-2
2nd is -3x -2
3rd one (put 1 instead of x in the given functions then calculate values and multiple )6
Answer:
1) Fail to reject the Null hypothesis
2) We do not have sufficient evidence to support the claim that the mean distance students traveled to school from their current residence was different for males and females.
Step-by-step explanation:
A university administrator wants to test if there is a difference between the distance men and women travel to class from their current residence. So, the hypothesis would be:

The results of his tests are:
t-value = -1.05
p-value = 0.305
Degrees of freedom = df = 21
Based on this data we need to draw a conclusion about test. The significance level is not given, but the normally used levels of significance are 0.001, 0.005, 0.01 and 0.05
The rule of the thumb is:
- If p-value is equal to or less than the significance level, then we reject the null hypothesis
- If p-value is greater than the significance level, we fail to reject the null hypothesis.
No matter which significance level is used from the above mentioned significance levels, p-value will always be larger than it. Therefore, we fail to reject the null hypothesis.
Conclusion:
We do not have sufficient evidence to support the claim that the mean distance students traveled to school from their current residence was different for males and females.