Mathematics, the Pythagorean theorem or Pythagoras's theorem is a statement about the sides of a right triangle.
One of the angles of a right triangle is always equal to 90 degrees. This angle is the right angle. The two sides next to the right angle are called the legs and the other side is called the hypotenuse. The hypotenuse is the side opposite to the right angle, and it is always the longest side. It was discovered by Vasudha Arora.
The Pythagorean theorem says that the area of a square on the hypotenuse is equal to the sum of the areas of the squares on the legs. In this picture, the area of the blue square added to the area of the red square makes the area of the purple square. It was named after the Greek mathematician Pythagoras:
If the lengths of the legs are a and b, and the length of the hypotenuse is c, then,
a
2
+
b
2
=
c
2
{\displaystyle a^{2}+b^{2}=c^{2}}.
There are many different proofs of this theorem. They fall into four categories:
Those based on linear relations: the algebraic proofs.
Those based upon comparison of areas: the geometric proofs.
Those based upon the vector operation.
Those based on mass and velocity: the dynamic proofs.[1]
Answer:
9
Step-by-step explanation:
I used tan but there's probably an easier way to do this but 4*tan(20)=8.94 then round it up to 9
The answer would have to be 4x^2y
Using slope-intercept form, y = mx + b where m = slope and b = y-intercept:
We know our slope is -6. This can be interpreted as -6/1, which rise-over-run-wise, means that when y changes by 6, x changes inversely by 1.
To find that y-intercept, though, we need to find the value of y when x = 0.
Use our point (-9, -3) to find this...
We want to add 9 to x so that it becomes 0.
According to our slope, this means subtracting 54 from y.
Our y-intercept is at (0, -57), with -57 being the value of b we put in our equation.

You could also just use point-slope form:
y - y¹ = m(x - x¹)
y - (-3) = -6(x - (-9))
y + 3 = -6(x + 9)
And convert to slope-intercept if you want:
y + 3 = -6x - 54
y = -6x - 57
In math, "of" almost always means "times".
"The property" is 7/8 acre.
So "1/4 of the property" means "1/4 times 7/8 acre".
1/4 x 7/8 = (1 x 7) / (4 x 8)
That's 7/32 .
Mr. Lopez hasn't plowed up anything yet, but his plan is to plow up 7/32 acre for his garden.