Answer : The isoelectronic groups are:



Explanation :
Isoelectronic : It is defined as the compound or molecule having the same number of electrons and the same number of electronic structure.
- The element is helium. The number of electrons are 2.
- The element is beryllium. The number of electrons are 4. The number of electrons in
= 4 - 2 = 2 - The element is lithium. The number of electrons are 3. The number of electrons in
= 3 - 1 = 2 - The element is nitrogen. The number of electrons are 7. The number of electrons in
= 7 + 3 = 10 - The element is neon. The number of electrons are 10.
- The element is sulfur. The number of electrons are 16. The number of electrons in
= 16 + 2 = 18 - The element is magnesium. The number of electrons are 12. The number of electrons in
= 12 - 2 = 10 - The element is titanium. The number of electrons are 22. The number of electrons in
= 22 - 4 = 18 - The element is potassium. The number of electrons are 19. The number of electrons in
= 19 - 1 = 18
The isoelectronic groups are:



Answer:
H. 2 blue, 3 yellow, and 12 green
Explanation:
Aluminium atoms (Al) = Blue Beads
Oxygen Atoms (O) = Green Beads
Sulfur (S) = Yellow beads
From the compound Al2(SO4)3, the number of atoms present are;
Al = 2
S = 3
O = 12
This means the model would contain;
2 Blue beads
12 Green beads
3 Yellow beads
The correct option is; H. 2 blue, 3 yellow, and 12 green
°C + 273.15 = K. The basic formula for converting Fahrenheit into Celsius is (°F − 32) × 5/9 = °C. To convert Fahrenheit degrees into Kelvins, (°F − 32) × 5/9 + 273.15 = K.
An Ionic bond is when you have a metal and a nonmetal element bonded together. In this kind of bonds, the metal atom takes electrons from the nonmetal. on other words, this bond involves the gaining and losing of electrons. The atom that receives the electrons becomes an anion (negatively charged ion) and the one that loses them becomes the cation (positively charged ion)
A covalent bond is a bond created between two nonmetals element. In here, both atoms share the electrons.
Both bonds involve interaction between atoms.