Answer:
It is usually easier to calculate an enzyme's reaction velocity from the rate of appearance of PRODUCT rather than the rate of disappearance of a SUBSTRATE. Enzyme activity is measured as an INITIAL reaction velocity, the velocity before much SUBSTRATE has been depleted and before much PRODUCT has been generated. It is easier to measure the appearance of a small amount of PRODUCT from a baseline of zero PRODUCT than to measure the disappearance of small amount of SUBSTRATE against a background of high concentration of SUBSTRATE.
Answer:
a. Acetyl CoA carboxylase
Explanation:
Much of the fatty acids used by the body is supplied by the diet, excessive amounts of carbohydrates and protein obtained from the diet can be converted to fatty acids and stored as triglycerides. Fatty acid synthesis occurs mainly in the liver and mammary glands, and to a lesser extent in adipose tissue and kidney, the process incorporates acetyl CoA carbons into the forming fatty acid chain using ATP and NADPH.
The acetyl portion of acetyl CoA is transported to cytosol as citrate, produced by condensation of oxaloacetate and acetyl CoA, the first reaction of the citric acid cycle, this occurs when the concentration of mitochondrial citrate is high, observed when there is a high concentration of ATP and isocitrate dehydrogenase is inhibited. The increase of citrate and ATP favors the synthesis of fatty acids, since this pathway needs both. Acetyl CoA should be converted to malonyl CoA. Carboxylation is catalyzed by acetyl CoA carboxylase and requires ATP, this reaction is the regulated step in fatty acid synthesis: it is inactivated by products, malonyl CoA and palmitoyl CoA, and activated by citrate, another regulatory mechanism is reversible phosphorylation of enzyme, which makes it inactive due to the presence of adrenaline / glucagon
this statement is False. prenatal development stages in order go from the germinal stage, embryonic stage, and the fetal stage, hope this helps :)