28mi/1 hr = 28 mi/60 min = 1 mi/(60/28) min =
28 mi/hr = 28 mi/60 min since there are 60 min in 1 hr
1 mi/(60/28) min since you divide top and bottom of 28/60 by 28 to get
1 mi/(60/28) min = 1mi/(15/7) min = 1 mi/ 2 1/7 min
I think it's B because it's makes the most sense
Answer: If two pair is parallel then it has no solution.
Step-by-step explanation:
Since we have given that
Let the number of gained yards by each player be y
For the case of Brayden:
Equation will be

For the case of Howard :
Equation will be

For the case of Vincent :

Since First two equations are parallel so it has no solution.
Reason:

Hence, if two pair is parallel then it has no solution.
Answer:
There are two choices for angle Y:
for
,
for
.
Step-by-step explanation:
There are mistakes in the statement, correct form is now described:
<em>In triangle XYZ, measure of angle X = 49°, XY = 18 and YZ = 14. Find the measure of angle Y:</em>
The line segment XY is opposite to angle Z and the line segment YZ is opposite to angle X. We can determine the length of the line segment XZ by the Law of Cosine:
(1)
If we know that
,
and
, then we have the following second order polynomial:

(2)
By the Quadratic Formula we have the following result:

There are two possible triangles, we can determine the value of angle Y for each by the Law of Cosine again:



1) 
![Y = \cos^{-1}\left[\frac{18^{2}+14^{2}-15.193^{2}}{2\cdot (18)\cdot (14)} \right]](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B18%5E%7B2%7D%2B14%5E%7B2%7D-15.193%5E%7B2%7D%7D%7B2%5Ccdot%20%2818%29%5Ccdot%20%2814%29%7D%20%5Cright%5D)

2) 
![Y = \cos^{-1}\left[\frac{18^{2}+14^{2}-8.424^{2}}{2\cdot (18)\cdot (14)} \right]](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B18%5E%7B2%7D%2B14%5E%7B2%7D-8.424%5E%7B2%7D%7D%7B2%5Ccdot%20%2818%29%5Ccdot%20%2814%29%7D%20%5Cright%5D)

There are two choices for angle Y:
for
,
for
.
All of given options contain quadratic functions. One way to determine the extreme value is squaring the expression with variable x.
Option B contain the expression where you can see perfect square. Thus, equation
(choice B) reveals its extreme value without needing to be altered.
To determine the extreme value of this equation, you should substitute x=2 (x-value that makes expression in brackets equal to zero) into the function notation:
The extreme value of this equation has a minimum at the point (2,5).