so first day and so on
7, 10, 13,....
as you can see it's an arithmetic progression
so sum for nth term= n/2 { 2a + (n-1) d}
it's the sum of the 7th term
so
7/2 { 7 ×2 + ( 7-1) 3}
7/2 × 32
7× 16
112 fishes
Answer:
4:24 p.m.
Step-by-step explanation:
Figure out how often the buses leave at the same time. This is the same as the least common multiple (LCM) of how often they leave the stadium.
The LCM is found by multiplying the maximum number of each prime factor found in any of the numbers.
The prime factors of a number are found by dividing it by whole numbers until the factors are all prime. Prime numbers only have the factors 1 and itself.
6 = 2 X 3
8 = 2 X 2 X 2
The greatest times 2 repeats is three times.
The greatest times 3 repeats is one time.
2 X 2 X 2 X 3 = 24
The LCM is 24, and the buses have the same leaving times every 24 minutes.
Find 24 minutes after 4:00 p.m. Change the minutes only, which are the numbers right of the colon : .
The buses will next leave together at 4:24 p.m.
Answer:
(-5, 0) ∪ (5, ∞)
Step-by-step explanation:
I find a graph convenient for this purpose. (See below)
__
When you want to find where a function is increasing or decreasing, you want to look at the sign of the derivative. Here, the derivative is ...
f'(x) = 4x^3 -100x = 4x(x^2 -25) = 4x(x +5)(x -5)
This has zeros at x=-5, x=0, and x=5. The sign of the derivative will be positive when 0 or 2 factors have negative signs. The signs change at the zeros. So, the intervals of f' having a positive sign are (-5, 0) and (5, ∞).
B 9.2 in will be your answer for the test
If you have covered function tranformations
is an exponential function, likely something like

but shifted upwards by 3 units and with a coefficient multiplying "x" something like "2"
so... try graphing in your calculator