Answer:
Yes
Step-by-step explanation:
We know that
If the scalar product of two vectors<span> is zero, both vectors are </span><span>orthogonal
</span><span>A. (-2,5)
</span>(-2,5)*(1,5)-------> -2*1+5*5=23-----------> <span>are not orthogonal
</span><span>B. (10,-2)
</span>(10,-2)*(1,5)-------> 10*1-2*5=0-----------> are orthogonal
<span>C. (-1,-5)
</span>(-1,-5)*(1,5)-------> -1*1-5*5=-26-----------> are not orthogonal
<span>D. (-5,1)
</span>(-5,1)*(1,5)-------> -5*1+1*5=0-----------> are orthogonal
the answer is
B. (10,-2) and D. (-5,1) are orthogonal to (1,5)
N^4 - 1 = (n^2 - 1)(n^2 + 1)
= (n + 1)(n - 1)(n^2 + 1)
X= -4; f(x)= -15
X= 2; f(x)= 3
X=5; f(x)= 12
Hello,
Answer A: 2 has two pictures (values)