Answer:
1 and 1/20
Step-by-step explanation:
LCM of 5 and 4 = 20
4/5 = 16/20
1/4 = 5/20
<span>In </span>mathematics<span>, a </span>matrix<span> <span>(plural </span></span>matrices) is a
rectangular array of numbers, symbols, or expressions, arranged in rows and
columns.
Given that
E = [ 1 2]
<span>A = | 3
0|</span>
<span> | 2
-1 |</span>
<span>2EA = 2 [1 2] | 3 0|</span>
<span> | 2 -1 |</span>
<span>2EA = [ 14
-4]</span>
<span> </span>
Khfihpidhipjgrpijgpjeipgjepjgrrh
Answer:
523.6
Step-by-step explanation:
Following the calculation, and 3.14 for pi, the answer would be 523.6
Answer:
![V = \left[\begin{array}{ccc}5&-1\end{array}\right]](https://tex.z-dn.net/?f=V%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We want to reflect this 2x1 vector on the line y = x.
To make this reflection we must use the following matrix:
![R=\left[\begin{array}{cc}0&1\\1&0\\\end{array}\right]](https://tex.z-dn.net/?f=R%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%261%5C%5C1%260%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Where R is known as the reflection matrix on the line x = y
Now perform the product of the vector <-1,5> x R.
![\left[\begin{array}{ccc}-1\\5\end{array}\right]x\left[\begin{array}{ccc}0&1\\1&0\end{array}\right]\\\\\\\left[\begin{array}{ccc}-1(0) +5(1)&-1(1)+5(0)\end{array}\right]\\\\\\\left[\begin{array}{ccc}5&-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%5C%5C5%5Cend%7Barray%7D%5Cright%5Dx%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C1%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%280%29%20%2B5%281%29%26-1%281%29%2B5%280%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%5Cend%7Barray%7D%5Cright%5D)
The vector matrix that represents the reflection of the vector <-1,5> across the line x = y is:
![V = \left[\begin{array}{ccc}5&-1\end{array}\right]](https://tex.z-dn.net/?f=V%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%5Cend%7Barray%7D%5Cright%5D)