Atomic number should be the answer
Speific heat capacity is measured with the aid of determining how a whole lot warmth electricity is needed to increase one gram of a substance one digree Celsius. The Speific heat capacity of water is 4.2 joules per gram per degree Celsius or 1 calorie in step with gram per digree Celsius.
The specific heat capacity is defined as the amount of heat (J) absorbed consistent with unit mass (kg) of the substance while its temperature increases 1 ok (or 1 °C), and its units are J/(kg k) or J/(kg °C).
Factors specific heat capacity relate to are temperature and strength.
The Speific heat capacity C can be measured as q = mC∆T
Or, C = q/m∆T
where,
C is the specific heat capacity
q is the quantity of heat required
m is the mass
∆T is the change in temperature
As a consequence so as to degree the specific heat capacity we need to recognize mass of the substance, quantity of heat lost or gain by the substance and the exchange in temperature.
Lear more about Speific heat capacity here: brainly.com/question/17162473
#SPJ4
The final temperature of the mixture : 21.1° C
<h3>Further explanation </h3>
The law of conservation of energy can be applied to heat changes, i.e. the heat received / absorbed is the same as the heat released
Q in(gained) = Q out(lost)
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Q ethanol=Q water
mass ethanol=

mass water =

then the heat transfer :

Answer:
you tilt the cylinder at a slight angle so that the metal slides down the sides, rather than drops all it`s weight to the bottom
<span>1,3-cylohexadiene i synthesized starting from cyclohexane in following 4 steps.
1) Free Radical Substitution Rxn: Halogenation of cyclohexane in the presence of UV yield chlorocyclohexane.
2) Elimination Rxn: Dehydrohalogenation of chlorocyclohexane yields cyclohexene.
3) Halogenation of Cyclohexene (
Electrophillic Addition Rxn) gives 1,2-dihalocyclohexane.
4) Elemination Rxn: When dibromocyclohexane is treated with KOH and heated it gives 1,3-cyclohexadiene as shown below,</span>