Their atomic number increases
Answer:
0.719M AgNO₃
Explanation:
Based on the reaction:
MgBr₂ + 2AgNO₃ ⇄ 2AgBr + Mg(NO₃)₂
<em>1 mole of magnesium bromide reacts completely with 2 moles of AgNO₃</em>
<em />
To find molarity of AgNO₃ solution we need to determine moles of AgNO₃ and, as molarity is the ratio of moles over liter (13.9mL = 0.0139L). Now, to determine moles of AgNO₃ we need to use the reaction, thus:
<em>Moles AgNO₃:</em>
<em />
Moles of MgBr₂ are:
50.0mL = 0.050L * (0.100mol / L) = 0.00500 moles of MgBr₂.
As the silver nitrate reacts completely and 2 moles of AgNO₃ reacts per mole of MgBr₂:
0.00500 moles MgBr₂ * (2 moles AgNO₃ / 1 mole MgBr₂) =
0.0100 moles of AgNO₃ are in the solution.
And molarity is:
0.0100 moles AgNO₃ / 0.0139L =
<h3>0.719M AgNO₃</h3>
Answer:
1. Alkali metals (group 1)
2. halogens (Group 17)
3. noble gasses (group 18)
Explanation:
1. alkali metals only have one valence electron meaning that they really want to lose that one valence electron to get a full octet.
2. halogens have 7 valence electrons meaning that they just need to gain 1 to get a full octet.
3. Nobel gasses already have a full octet meaning that they don't want to react. (atoms only react to get a full octet)
I hope this helps. Let me know if anything is unclear.
Answer:
See the answer below.
Explanation:
Fire has three major components:
- Heat
- Smoke
- Gases ( in form of CO, CO2 etc)
If the victim had died as a result of the fire, he/he would have inhaled smoke and hot gases from the fire. These components would have resulted in traces of burns and soot deposition in the trachea and lungs as well as traces of CO in the blood of the victim.
If the analysis of the victim's corpse does not reflect some of the results above, it can be effectively concluded that the victim has been dead before the fire.
<em>The single most important indicator of death by the fire would be the presence of CO in the blood of the victim's corpse. All others might be to a less significant degrees.</em>
<span>A. Mechanic agitations</span>