How many years will it take for an initial investment of $20,000 to grow to $30,000? Assume a rate of interest of 6% compounded
continuously.
1 answer:
F = Pe^(rt)
F is the final amount
P is the principal
r is the interest rate
t is the time in years
30000=20000 e^(.06t)
divide by 20000
3/2 = e ^ .06t
take the ln on each side
ln(3/2) = .06t
divide by .06
ln(3/2)/.06 =t
t=6.75775 years
You might be interested in
The answer is 5 I’m sure of it 100%
Answer:
C i believe so
Step-by-step explanation:
3p=p(1+0.06)^t
3=(1.06)^t
T=log(3)÷log(1.06)
T=18.9 years
Answer:
Picture A.
Hope this helps :)
<em>-ilovejiminssi ♡</em>