Applying the linear pair theorem, the measure of angle TSV in the image given is: 86°.
<h3>How to Apply the Linear Pair Theorem?</h3>
Given the following angles in the image above:
Measure angle RSU = (17x - 3)°,
Measure angle UST = (6x – 1)°
To find the measure of angle TSV, we need to find the value of x in the given expressions as shown below:
m∠RSU + m∠UST = 180 degrees (linear pair]
Substitute the values
17x - 3 + 6x - 1 = 180
Solve for x
23x - 4 = 180
23x = 180 + 4
23x = 184
x = 8
m∠TSV = 180 - 2(m∠UST) [Linear Pair Theorem]
m∠TSV = 180 - 2(6x - 1)
Plug in the value of x
m∠TSV = 180 - 2(6(8) - 1)
m∠TSV = 86°
Therefore, applying the linear pair theorem, the measure of angle TSV in the image given is: 86°.
Learn more about the linear pair theorem on:
brainly.com/question/5598970
#SPJ1
M∠BDC=half the arc it faces=1/2 of 54=27
BD is the diameter, so m∠C=90
m∠DBC=180-90-27=63
Answer:
30 your welcone...........
mark me brainliest
The answer is D, 10 is in the thousandths place
He needs only one because 2 is bigger than 5/6
hope this helps and you rate me good