The <span>given the piecewise function is :
</span>
![f(x) = \[ \begin{cases} 2x & x \ \textless \ 1 \\ 5 & x=1 \\ x^2 & x\ \textgreater \ 1 \end{cases} \]](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5C%5B%20%5Cbegin%7Bcases%7D%20%0A%20%20%20%20%20%202x%20%26%20x%20%5C%20%5Ctextless%20%5C%20%201%20%5C%5C%0A%20%20%20%20%20%205%20%26%20x%3D1%20%5C%5C%0A%20%20%20%20%20%20x%5E2%20%26%20x%5C%20%5Ctextgreater%20%5C%201%20%0A%20%20%20%5Cend%7Bcases%7D%0A%5C%5D)
To find f(5) ⇒ substitute with x = 5 in the function → x²
∴ f(5) = 5² = 25
To find f(2) ⇒ substitute with x = 5 in the function → x²
∴ f(2) = 2² = 4
To find f(-2) ⇒ substitute with x = 5 in the function → 2x
∴ f(-2) = 2 * (-2) = -4
To find f(1) ⇒ substitute with x = 1 in the function → 5
∴ f(1) = 5
================================
So, the statements which are true:<span>

</span><span>
</span>
We have a system of equations in two variables, namely, a and c. Use the substitution to find a and c.
Answer:
D = { -4,-2,1,4}
Step-by-step explanation:
The domain is the inputs to the function
D = { -4,-2,1,4}
Answer:
Collin is 37.5 and Sara is 47.5
Step-by-step explanation:
s+c=85
c+10=s
(c+10)+c=85
2c+10=85
2c=75
c=37.5
s+(37.5)=85
s=47.5
<span>(2^1/2x2^3/4)^2
</span><span> ((2^1/2)(2^3/4))^2
</span> ((2^1/2)^2)((2^3/4)^2)
(2)(2^3/2)
(4*2^3)^(1/2)
(2*2*2^3)^(1/2)
(*2^5/2)
The answer for this case is
b. <span>sqrt 2^5</span>