Answer: 1. 5
2H202 -> 2H2O + O2 ; 2 + 2 +1 = 5
They can still be effected it large quantities of soap are added to water
because more soap eliminates the effect the minerals in hard water has on
its cleaning capacity.
Hard water contains minerals such as
They reduce the cleaning capacity of the soap. This is why soft water is
preferably used as it doesn't contain these minerals.
When more soap is added, the effect of the minerals reduces thereby
bringing about very little or no effect on the cleaning capacity of the soap.
Read more about Soap here brainly.com/question/1473301
Answer:
10°C
Explanation:
Heat gain by water = Heat lost by the slice of pizza
Thus,

<u>For water: </u>
Volume = 50.0 L
Density of water= 1 kg/L
So, mass of the water:
Mass of water = 50 kg
Specific heat of water = 1 kcal/kg°C
ΔT = ?
For slice of pizza:
Q = 500 kcal
So,
ΔT = 10°C
Increase in temperature = 10°C


= 2 × 23 + 2 × 52 + 2 × 16
= 182 grams
1 mole of
weighs = 182 g
8 moles weigh = 8× 182
=
or

Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.