Explanation:
color (intensive)
density (intensive)
volume (extensive)
mass (extensive)
boiling point (intensive): the temperature at which a substance boils
melting point (intensive): the temperature at which a substance
Answer: It would be malleable, solids, luster, conductors, reactive
Explanation:
Answer:
the answer is Compounds
Explanation:
Compounds are pure substances formed by the combination of elements; they can be decomposed by ordinary chemical means.
Answer:
Explanation:
The strong bases have following properties:
1. In solution, strong bases ionize fully.
2. On dissolving the strong bases in water they produce all hydroxide ion which they have.
3. For strong bases the value of equilibrium constant (Kb ) is large.
4. In general the strong base ionizes completely means concentration of ions are greater means conductivity also greater.
5. For strong bases the value of equilibrium constant (Kb) is large, thus the value of dG0 is very large negative number.
Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.