1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitriy789 [7]
4 years ago
13

Equation for the line containing (4,5) and (-2,-4)

Mathematics
2 answers:
pashok25 [27]4 years ago
8 0

Answer:2y - 3x = -2

Step-by-step explanation:

The equation of line in two point form is given as :

\frac{y-y_{1}}{x -x_{1}} = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}

from the question,

x_{1} = 4

x_{2} = -2

y_{1} = 5

y_{2} = - 4

substituting into the formula , we have

\frac{-4-5}{-2-4} = \frac{y-5}{x-4}

\frac{9}{6} = \frac{y-5}{x-4}

\frac{3}{2} = \frac{y-5}{x-4}

cross multiplying , we have

2(y-5) = 3(x-4)

2y - 10 = 3x - 12

2y - 3x = -12 +10

2y - 3x = -2

mars1129 [50]4 years ago
4 0

Answer:

Step-by-step explanation:

first need to find the slope

-4-5=-9

-2-4=-6

=3/2

y-5=3/2(x-4) this is your point slope equation

y-5=3/2x-6

y=3/2x-1 this is your slope intercept equation

-3/2x+y=-1

muliply by -2

3x-2y=2 this is your equation in standard form

You might be interested in
Decide if this function is a polynomial function. If so, write it in standard form, classify by degree and number of terms and s
skad [1K]

Answer:

f(x) = 6x^3 + 3x^2 - 3x - 7

is a polynomial function

degree 3

number of terms 4

leading coefficient 6

6 0
4 years ago
Please help me out with this
Naddik [55]

Answer:

(x - 5)² + (y + 3)² = 16

Step-by-step explanation:

The equation of a circle in standard form is

(x - h)² + (y - k)² = r²

where (h, k) are the coordinates of the centre and r is the radius

here (h, k) = (5, - 3) and r = 4, so

(x - 5)² + (y - (- 3))² = 4², that is

(x - 5)² + (y + 3)² = 16

3 0
3 years ago
Find the distance between points p(8, 2) and q(3, 8) to the nearest tenth.
grandymaker [24]
Distance between two points, d, is given by
d= \sqrt{ ( x_{2} - x_{1}) ^{2} + (y_{2} - y_{1}) ^{2} }

where: (x1, y1) = (8, 2) and (x2, y2) = (3, 8)
d= \sqrt{ ( 3 - 8) ^{2} + (8 - 2) ^{2} } \\ d= \sqrt{ (-5)^{2} + 6^{2} }  \\ d= \sqrt{25+36}  \\ d= \sqrt{61}  \\ d=7.8 \ units
 
3 0
3 years ago
Read 2 more answers
Two thirds of a number decreased by six is two. what is the number?
Kisachek [45]
Answer:  The number is:  " 12 ". 

____________________________________
  Let "x" represent "the unknown number" (for which we wish to solve.

The expression:

\frac{2}{3} x  <span>− 6  =  2  ;   Solve for "x" ;  
</span>_______________________________________________
Method 1) 

   Add "6" to EACH SIDE of the equation;
_______________________________________________
       →   \frac{2}{3} x  − 6  + 6 =  2 + 6 ;

to get:

      →   \frac{2}{3} x = 8 ;
______________________________________________
Multiply each side of the equation by "\frac{3}{2}" ; to isolate "x" on one side of the equation ; and to solve for "x" ;
______________________________________________
     → \frac{3}{2} * \frac{2}{3} x = 8 * \frac{3}{2} ;

       →  x = 8 * \frac{3}{2} ;

                = \frac{8}{1} * \frac{3}{2} ;

                = \frac{8*3}{1*2} ;
       
                = \frac{24}{2} ;
 
                = <span>1<span>2 .</span></span>
______________________________________________
  x =  12 .
______________________________________________
Method 2)
______________________________________________
\frac{2}{3} x  − 6  =  2  ;   Solve for "x" ; 

   Add "6" to EACH SIDE of the equation;
_______________________________________________
       →   \frac{2}{3} x  − 6  + 6 =  2 + 6 ;

to get:
      →   \frac{2}{3} x = 8 ;
______________________________________________
Multiply each side of the equation by "3" ; to get rid of the "fraction" ;
               → 3 * \frac{2}{3} x = 8 * 3  ;
               → \frac{3}{1} * \frac{2}{3} x = 8 * 3 ;
               → \frac{3*2}{1*3}  x = 8 * 3 
               → \frac{6}{3} x = 24 ; 

                → 2x = 24 ;

 →  Divide each side of the equation by "2" ; to isolate "x" on one side of the equation; & to solve for "x" : 
 
                    2x / 2 = 24 / 2  ;

                        x = 12 .
__________________________________________________
Method 3).
__________________________________________________
\frac{2}{3} x  − 6  =  2  ;   Solve for "x" ;  
_______________________________________________
Add "6" to EACH SIDE of the equation;
_______________________________________________
       →   \frac{2}{3} x  − 6  + 6 =  2 + 6 ;

to get:

      →   \frac{2}{3} x = 8 ;
______________________________________________
Now, divide each side of the equation by " \frac{2}{3} " ;
  to isolate "x" on one side of the equation; & to solve for "x" ;
___________________________________________________
{\frac{2}{3} x }  /  {\frac{2}{3}}  =  8 / {\frac{2}{3}} ;

to get:  x =  8 / {\frac{2}{3}} ;

                =  8 * (\frac{3}{2} ;

                =  \frac{8}{1}  *  \frac{3}{2} ;

                =  \frac{8*3}{1*2} ;

                =  \frac{24}{2} ;

                = 12 ; 
___________________________________________
                         x = 12 .
___________________________________________
NOTE:  Variant:  (in "Methods 2 & 3") :
___________________________________________
At the point where:
___________________________________________
 =  8 * (\frac{3}{2}) ;

  =  \frac{8}{1}  *  \frac{3}{2} ;
__________________________________________
  We can cancel out the "2" to a "1" ; and we can cancel out the "8" to a "4" ;
__________________________________________
  {since: "8÷2 = 4" ; and since:  "2÷2 =1" } ;
__________________________________________
and we can rewrite the expression:
__________________________________________
 \frac{8}{1}  *  \frac{3}{2} ;
__________________________________________
as:   \frac{4}{1}  *  \frac{3}{1} ; 
__________________________________________
which equals:
__________________________________________
→  \frac{4*3}{1*1} ; 

   =   \frac{12}{1} ;

            =  12 .
__________________________________________
         x = 12 . 
__________________________________________
Answer:  The number is:  " 12 ". 
__________________________________________
8 0
4 years ago
Simplify to lowest form.<br> a. 1/2 + 3/2 = ?<br><br> b. 2/5 + 3/5 = ?
forsale [732]
For letter the answer is 2

for letter b the answer is 1
6 0
3 years ago
Read 2 more answers
Other questions:
  • Write an expression that can be used to check the quotient of 646 :3
    11·1 answer
  • Eric has a dog walking business he charges $13 per dog he walks and $6 for the water he buys for the dogs if he made $97 on Mond
    8·1 answer
  • Calcula el área máxima que puede tener un triángulo rectángulo de tal manera que la suma de las longitudes de sus dos catetos va
    14·1 answer
  • Five more than the quotient of a number and 4 is 8  translate in to a equation       .                         
    13·1 answer
  • Megan earned four dollars for an hour of babysitting on Saturday here and $16 how many hours did she babysit
    6·1 answer
  • Write the equation of a line that is perpendicular y=2/3x+9
    5·2 answers
  • If amy earns 237.60 after working 33 hours what is the hourly rate
    8·1 answer
  • Using the graphing method to solve the system of linear equations y= -x + 3 and y = x -1
    15·1 answer
  • Ray’s weight increased by 11% in the last two years. If he gained 16.5 pounds, what was his weight two years ago?
    11·1 answer
  • I have no idea :( Please help
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!