1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Papessa [141]
3 years ago
10

Two thirds of a number decreased by six is two. what is the number?

Mathematics
1 answer:
Kisachek [45]3 years ago
8 0
Answer:  The number is:  " 12 ". 

____________________________________
  Let "x" represent "the unknown number" (for which we wish to solve.

The expression:

\frac{2}{3} x  <span>− 6  =  2  ;   Solve for "x" ;  
</span>_______________________________________________
Method 1) 

   Add "6" to EACH SIDE of the equation;
_______________________________________________
       →   \frac{2}{3} x  − 6  + 6 =  2 + 6 ;

to get:

      →   \frac{2}{3} x = 8 ;
______________________________________________
Multiply each side of the equation by "\frac{3}{2}" ; to isolate "x" on one side of the equation ; and to solve for "x" ;
______________________________________________
     → \frac{3}{2} * \frac{2}{3} x = 8 * \frac{3}{2} ;

       →  x = 8 * \frac{3}{2} ;

                = \frac{8}{1} * \frac{3}{2} ;

                = \frac{8*3}{1*2} ;
       
                = \frac{24}{2} ;
 
                = <span>1<span>2 .</span></span>
______________________________________________
  x =  12 .
______________________________________________
Method 2)
______________________________________________
\frac{2}{3} x  − 6  =  2  ;   Solve for "x" ; 

   Add "6" to EACH SIDE of the equation;
_______________________________________________
       →   \frac{2}{3} x  − 6  + 6 =  2 + 6 ;

to get:
      →   \frac{2}{3} x = 8 ;
______________________________________________
Multiply each side of the equation by "3" ; to get rid of the "fraction" ;
               → 3 * \frac{2}{3} x = 8 * 3  ;
               → \frac{3}{1} * \frac{2}{3} x = 8 * 3 ;
               → \frac{3*2}{1*3}  x = 8 * 3 
               → \frac{6}{3} x = 24 ; 

                → 2x = 24 ;

 →  Divide each side of the equation by "2" ; to isolate "x" on one side of the equation; & to solve for "x" : 
 
                    2x / 2 = 24 / 2  ;

                        x = 12 .
__________________________________________________
Method 3).
__________________________________________________
\frac{2}{3} x  − 6  =  2  ;   Solve for "x" ;  
_______________________________________________
Add "6" to EACH SIDE of the equation;
_______________________________________________
       →   \frac{2}{3} x  − 6  + 6 =  2 + 6 ;

to get:

      →   \frac{2}{3} x = 8 ;
______________________________________________
Now, divide each side of the equation by " \frac{2}{3} " ;
  to isolate "x" on one side of the equation; & to solve for "x" ;
___________________________________________________
{\frac{2}{3} x }  /  {\frac{2}{3}}  =  8 / {\frac{2}{3}} ;

to get:  x =  8 / {\frac{2}{3}} ;

                =  8 * (\frac{3}{2} ;

                =  \frac{8}{1}  *  \frac{3}{2} ;

                =  \frac{8*3}{1*2} ;

                =  \frac{24}{2} ;

                = 12 ; 
___________________________________________
                         x = 12 .
___________________________________________
NOTE:  Variant:  (in "Methods 2 & 3") :
___________________________________________
At the point where:
___________________________________________
 =  8 * (\frac{3}{2}) ;

  =  \frac{8}{1}  *  \frac{3}{2} ;
__________________________________________
  We can cancel out the "2" to a "1" ; and we can cancel out the "8" to a "4" ;
__________________________________________
  {since: "8÷2 = 4" ; and since:  "2÷2 =1" } ;
__________________________________________
and we can rewrite the expression:
__________________________________________
 \frac{8}{1}  *  \frac{3}{2} ;
__________________________________________
as:   \frac{4}{1}  *  \frac{3}{1} ; 
__________________________________________
which equals:
__________________________________________
→  \frac{4*3}{1*1} ; 

   =   \frac{12}{1} ;

            =  12 .
__________________________________________
         x = 12 . 
__________________________________________
Answer:  The number is:  " 12 ". 
__________________________________________
You might be interested in
9( 2k + 3 ) + 2 = 11 ( k- y )
Mashcka [7]
9(2k+3)+2=11 (k-y) 
k=-11/7 y+ -29/7
8 0
2 years ago
Read 2 more answers
How many solutions does the equation have?<br><br> 2x + 3 = 4x + 2
fenix001 [56]
Well, solve for x.

Combine like terms by performing the opposite operation of subtracting 4x on both sides of the equation

The 4x's will cross out on the right

4x - 4x = 0x = 0

On the left:

2x - 4x = -2x

Now the equation looks like:

-2x + 3 = 2

Continue to combine like terms by subtracting 3 on both sides of the equation

On the left:

3 - 3 = 0

On the right:

2 - 3 = -1

Equation:

-2x = -1

Isolate x by performing the opposite operation of dividing -2 on both sides of the equation

On the left:

-2x ÷ -2 = 1

On the right:

-1 ÷ -2 = 1/2

x= 1/2

So, there is only one solution: 1/2
8 0
3 years ago
Read 2 more answers
Write an equation for n times a only using addition
AlekseyPX
N*x*a=n+x+a

<span>If n=1, x=2 and a=3.</span>
6 0
3 years ago
Enter a recursive rule for the geometric sequence. 6, −18, 54, −162, ...
svlad2 [7]

Answer:

The required recursive formula is:

a_n=(-3)\times a_{n-1}

Step-by-step explanation:

We are given a geometric sequence as:

6,-18,54,-162,.....

Clearly after looking at different terms of the sequence we could observe that the sequence is an geometric progression (G.P.) with common ratio= -3 denoted by r.

Let a_n represents the nth term of the sequence.

This means that:

a_1=6, a_2=-18, a_3=54, a_4=-162,......

As the common ratio is -3.

so,

a_1=6\\\\a_2=-18=(-3)\times a_1\\\\a_3=54=(-3)\times a_2\\\\.\\.\\.\\.\\.\\.\\.\\.\\.a_n=(-3)\times a_{n-1}

Hence, the required recursive formula for the geometric sequence is:

a_n=(-3)\times a_{n-1}

5 0
3 years ago
Find the sum of the infinite geometric series: 1023 (0.25)-1 n=1 1,024 1 364 0 -1364 -1024​
ira [324]

Answer:1,364

Step-by-step explanation: I did the assignment

7 0
2 years ago
Other questions:
  • Help with this problem. thanks.
    6·1 answer
  • I need desperate help it's the last one and I don't under stand it.
    13·1 answer
  • The lines graphed below are perpendicular. The slop of the red line is -1/3. What is the slope of the green line
    5·1 answer
  • Density = _____<br><br><br><br> Need answers asap
    6·2 answers
  • How can i get better at maths
    7·1 answer
  • Find the value of x by filling the blanks in the provided statement-reason solutions. a Statement Reason 1. m∠A +m∠B +m∠C = ____
    12·1 answer
  • The function f(x) = x^2+ 5x – 6 is shifted 4 units to the left to create g(x). What<br> is g(x)?
    5·1 answer
  • A bag has 4 red 3 white 2 blue and 1 green marble in it. Use this information to answer question 9-11.
    11·2 answers
  • HELPPPPO THIS IS DUE TOMORROW!
    5·1 answer
  • Sound travels through substances as energy is transferred from one particle to the next. The diagrams represent the particles of
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!