Answer:
(3 square root of 2 , 135°), (-3 square root of 2 , 315°)
Step-by-step explanation:
Hello!
We need to determine two pairs of polar coordinates for the point (3, -3) with 0°≤ θ < 360°.
We know that the polar coordinate system is a two-dimensional coordinate. The two dimensions are:
- The radial coordinate which is often denoted by r.
- The angular coordinate by θ.
So we need to find r and θ. So we know that:
(1)
x = rcos(θ) (2)
x = rsin(θ) (3)
From the statement we know that (x, y) = (3, -3).
Using the equation (1) we find that:

Using the equations (2) and (3) we find that:
3 = rcos(θ)
-3 = rsin(θ)
Solving the system of equations:
θ= -45
Then:
r = 3\sqrt{2}[/tex]
θ= -45 or 315
Notice that there are two feasible angles, they both have a tangent of -1. The X will take the positive value, and Y the negative one.
So, the solution is:
(3 square root of 2 , 135°), (-3 square root of 2 , 315°)
Answer:
B
Step-by-step explanation:
it is because is the cubic equation and the formula involves quadratic formula
The sum of the first n terms in a geometric sequence given the first term (a1) and the common ratio (r) is calculated through the equation,
<span>Sn </span>= (<span><span><span>a1</span>(1−<span>r^n</span>) / (</span><span>1−r)
Substituting the known terms,
Sn = (20)(1 - (1/4)^4)) / (1 - 1/4)
Sn = 26.5625
Thus, the sum of the first four terms is 26.5625. </span></span>
Answer:
Fred would take 33 days to save $ 70.95.
Step-by-step explanation:
The number of days (
) is directly proportional to the quantity of money saved (
), in monetary units, then we can calculate the time taken to save $ 70.95 by simple rule of three:


Fred would take 33 days to save $ 70.95.